HP71B Integral Questions
|
02-21-2020, 11:23 PM
(This post was last modified: 02-23-2020 01:55 AM by Albert Chan.)
Post: #30
|
|||
|
|||
RE: HP71B Integral Questions
Out of curiosity, I tried using the actual Gamma function integral
\(\Gamma(x+1) = \int _0 ^1 (-\ln(t))^x dt \) This integral, for any big x, choke on HP71B INTEGRAL Instead, I tried letting \(t = s^{x+1}\), turning the extreme spike into a bell-shaped curve \(\Gamma(x+1) = \int _0^1 (x+1) s^x (-(x+1)\ln(s))^x ds = (x+1)^{x+1} \int _0^1 (-s\ln(s))^x ds\) Scale RHS 2 terms to avoid hitting overflow limits, we have: Code: 10 P=1/10^8 >RUN X=?10 3623769.01194 -3.61915267163E-2 40.36 3628800.00001 12719498.961 .09 3628800 GAMMA(X+1) >RUN X=?20 1.66431877492E18 -15440997253.2 40.47 2.4329020082E18 4.16433765069E22 .11 2.43290200818E18 GAMMA(X+1) >RUN X=?30 1.39229859877E31 -1.13405116532E23 40.31 2.65252859812E32 1.55401137325E38 .19 2.65252859812E32 GAMMA(X+1) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 5 Guest(s)