Post Reply 
(12C Platinum) 3n+1 Conjecture
04-05-2020, 04:04 PM
Post: #3
RE: (12C Platinum) 3n+1 Conjecture
Hello, Gamo !

Nice program.
I do appreciate the subject because I like to program this mathematical guess (known as Czech guess in French) to evaluate and test my new calculators.
I've never thought to introduce the search of the maximum and the odd/even distribution in my program and I think you had a good idea !

I deliver you my current version for HP12C / HP12C+ !

Thanks

-----------------------------------------------------------------------------------------------------------------
(12-27-2018 07:04 AM)Gamo Wrote:  This is the updated version that included the Maximum Value as well.

Procedure: (RPN mode)
Mostly the same as previous post but added the Maximum Value.
The maximum value is the highest point then each steps drop down to 1.

n [R/S] display 1
[X<>Y] display Iterations
[RCL] 1 display Odd
[RCL] 2 display Even
[RCL] 3 display Maximum

------------------------------------
Example: FIX 0

7 [R/S] display 1
[X<>Y] display 16 // Iterations
[RCL] 1 display 5 // Odd
[RCL] 2 display 11 // Even
[RCL] 3 display 52 // Max

-------------------------------------
Program: (RPN mode)
Code:

001 STO 0
002  0
003 STO 1
004 STO 2
005  2
006 STO 3   // Initialize 
------------------
007 RCL 0
008  2
009  ÷
010 FRAC
011 X=0    // Test for Even or Odd 
012 GTO 026  // Even start here
013  1    // Odd start here
014 STO+1
015 RCL 0
016  3
017  x
018  1
019  +
020 STO 0
----------------
021 RCL 3
022 X≤Y
023 X<>Y
024 STO 3   // Store Maximum Value
025 GTO 007  // Loop
----------------
026  1
027 STO+2
028 RCL 0
029  2
030  ÷
031 STO 0
032  1
033 X<>Y
034 X≤Y
035 GTO 037   // End Loop
036 GTO 007   // Loop
037 RCL 1  // Odd
038 RCL 2  // Even
039  +    // Total Iterations
040 RCL 0  // Final result is 1

Gamo


Attached File(s)
.pdf  HP12C - Conjecture tchèque Source - 20200405.pdf (Size: 21.54 KB / Downloads: 13)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(12C Platinum) 3n+1 Conjecture - Gamo - 12-25-2018, 11:55 AM
RE: (12C Platinum) 3n+1 Conjecture - Gamo - 12-27-2018, 07:04 AM
RE: (12C Platinum) 3n+1 Conjecture - Nihotte(lma) - 04-05-2020 04:04 PM
RE: (12C Platinum) 3n+1 Conjecture - Gamo - 04-06-2020, 01:57 AM



User(s) browsing this thread: 1 Guest(s)