(HP-67) Barkers's Equation
|
04-11-2020, 03:29 AM
Post: #6
|
|||
|
|||
RE: (HP-67) Barkers's Equation
Welcome to the forum, Mathias Zechmeister
Hyperbolic solutions to the cubics is simply matching hyperbolic triple angle formula. see https://mathworld.wolfram.com/CubicFormula.html, eqn 78,79,80 (12-06-2019 06:39 PM)Albert Chan Wrote: Solving cubic with Cardano's formula, x³ + 3x - 2W = 0 Another way is with identity: sinh-1(z) = ln(z + √(z²+1)) → y = e^(sinh-1(W)/3) → x = 2 sinh(sinh-1(W)/3) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(HP-67) Barkers's Equation - SlideRule - 12-06-2019, 01:27 PM
RE: (HP-67) Barkers's Equation - Albert Chan - 12-06-2019, 06:39 PM
RE: (HP-67) Barkers's Equation - Albert Chan - 12-07-2019, 09:39 PM
RE: (HP-67) Barkers's Equation - Albert Chan - 01-31-2020, 03:38 PM
RE: (HP-67) Barkers's Equation - Mathias Zechmeister - 04-10-2020, 10:34 PM
RE: (HP-67) Barkers's Equation - Albert Chan - 04-11-2020 03:29 AM
RE: (HP-67) Barkers's Equation - Mathias Zechmeister - 04-11-2020, 10:18 PM
RE: (HP-67) Barkers's Equation - Mathias Zechmeister - 08-10-2020, 08:10 AM
|
User(s) browsing this thread: 1 Guest(s)