Post Reply 
(HP-67) Barkers's Equation
04-11-2020, 03:29 AM
Post: #6
RE: (HP-67) Barkers's Equation
Welcome to the forum, Mathias Zechmeister

Hyperbolic solutions to the cubics is simply matching hyperbolic triple angle formula.
see https://mathworld.wolfram.com/CubicFormula.html, eqn 78,79,80

(12-06-2019 06:39 PM)Albert Chan Wrote:  Solving cubic with Cardano's formula, x³ + 3x - 2W = 0

y = ³√(W + √(W²+1))
x = y - 1/y

Another way is with identity: sinh-1(z) = ln(z + √(z²+1))
→ y = e^(sinh-1(W)/3)
→ x = 2 sinh(sinh-1(W)/3)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(HP-67) Barkers's Equation - SlideRule - 12-06-2019, 01:27 PM
RE: (HP-67) Barkers's Equation - Albert Chan - 04-11-2020 03:29 AM



User(s) browsing this thread: 1 Guest(s)