(41) Fibonacci & Lucas numbers
|
04-16-2020, 07:19 PM
(This post was last modified: 04-16-2020 07:46 PM by Albert Chan.)
Post: #4
|
|||
|
|||
RE: (41) Fibonacci & Lucas numbers
Starting from Binet's formula, where \(φ = {1+\sqrt5 \over 2}\)
\(\sqrt5 F_n = φ^n - (1-φ)^n = φ^n - (-1/φ)^n = φ^n - i^{2n} φ^{-n} = i^n \left(({φ \over i})^n - ({φ \over i})^{-n} \right) \) \(\large F_n = {2 \over \sqrt5}\; i^n \sinh(n \ln({φ \over i})) \) Let \(z_3 = \ln({φ \over i}) = \ln(φ) - {\pi \over 2} i \) \(\large \cosh z_3 = {{φ \over i} + {i \over φ} \over 2} = {-i φ\; +\; i (φ-1) \over 2} = {-i\over2} \) \(\large \sinh z_3 = ± \sqrt{ \cosh^2 z_3 - 1 } = ± \sqrt{{-5\over4}} = {-\sqrt5 i\over 2} = {\sqrt5 \over 2i}\quad \) // principle branch \(\large F_n = \left({2i \over \sqrt5}\right) i^{n-1} \sinh(n z_3) = i^{n-1} {\sinh(n z_3) \over \sinh(z_3)} \quad\) // matching previous post |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(41) Fibonacci & Lucas numbers - SlideRule - 04-05-2020, 11:20 AM
RE: (41) Fibonacci & Lucas numbers - Albert Chan - 04-13-2020, 04:49 PM
RE: (41) Fibonacci & Lucas numbers - Albert Chan - 04-13-2020, 05:40 PM
RE: (41) Fibonacci & Lucas numbers - Albert Chan - 04-16-2020 07:19 PM
|
User(s) browsing this thread: 3 Guest(s)