Post Reply 
Triple Integral
04-29-2020, 06:15 AM
Post: #4
RE: Triple Integral
You can rewrite the initial integral using parity in z and get the right answer:
Code:
2*int(int(int(sqrt(x^2+z^2), z = 0 .. sqrt(y - x^2)),y,x^2,4),x,-2,2)
If you add parity in x, you will have to simplify the answer.
Code:
4*int(int(int(sqrt(x^2+z^2), z = 0 .. sqrt(y - x^2)),y,x^2,4),x,0,2)
Multiple definite integrals are (too?) hard to integrate symbolically because the inner integrals have parameters and that prevent checking antiderivative discontinuities checks.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Triple Integral - lrdheat - 04-26-2020, 06:53 PM
RE: Triple Integral - Aries - 04-28-2020, 01:43 PM
RE: Triple Integral - Albert Chan - 04-28-2020, 08:27 PM
RE: Triple Integral - parisse - 04-29-2020 06:15 AM
RE: Triple Integral - Albert Chan - 04-29-2020, 12:47 PM
RE: Triple Integral - parisse - 04-29-2020, 01:57 PM
RE: Triple Integral - lrdheat - 04-29-2020, 02:59 PM
RE: Triple Integral - tom234 - 05-10-2020, 09:06 PM
RE: Triple Integral - Aries - 05-11-2020, 07:07 AM
RE: Triple Integral - tom234 - 05-11-2020, 10:35 AM
RE: Triple Integral - tom234 - 05-11-2020, 02:18 PM



User(s) browsing this thread: 1 Guest(s)