(32S, 32SII) Birthday paradox, hash collision probability
|
05-02-2020, 11:15 PM
(This post was last modified: 05-05-2020 12:55 AM by Albert Chan.)
Post: #8
|
|||
|
|||
RE: (32S, 32SII) Birthday paradox, hash collision probability
Assume x ≫ a, and let \(m = (x+{1+a\over2})\), prove \(\large {(x+a)!\over x!} ≈ m^a\)
\(\large {(x+a)!\over x!} = {m!\,/\,x! \over m!\,/\,(x+a)!} = {perm(m, {1+a\over2}) \over perm(m, {1-a\over2})}\) A few lines in XCas proved this ... XCas> P_nr(n,s) := exp(-s*(s-1)/(2n)) // probability of no repetition, assumed n ≫ s XCas> my_perm(n,s) := P_nr(n,s) * n^s // avoid name conflict with XCas perm() XCas> m := x+(1+a)/2 XCas> simplify(my_perm(m,(1+a)/2) / my_perm(m,(1-a)/2) - m^a) → 0 XCas> subst((x+a)! / x!, [x,a]=[69,0.95]) → 56.5843203835 XCas> subst(m^a, [x,a]=[69,0.95]) → 56.5842757853 XCas> subst(m^a, [x,a]=[70,-0.05]) * 70 // 69.95!/69! = 69.95!/70! * 70 → 56.5843440581 Update: this ratio formula is better XCas> ratio(x,a) := (x*x + (a+1)*(x + (a+2)/6)) ^ (a/2) XCas> ratio(69.,0.95) → 56.5843203845 XCas> ratio(70., -.05) * 70 // 69.95!/69! = 69.95!/70! * 70 → 56.5843203829 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)