Post Reply 
Volume of a bead with square hole- Program approach?
06-09-2020, 09:45 PM
Post: #7
RE: Volume of a bead with square hole- Program approach?
I cheated, and solve with Mathematica.

This time, I scaled everything by 2, to eliminate the 8x in front of hole volume.

> f1 = Integrate[Sqrt[d^2-x^2-y^2],{x,0,a}]

\(\frac{a\,{\sqrt{-a^2 + d^2 - y^2}} -
d^2\,\arctan (\frac{a\,{\sqrt{-a^2 + d^2 - y^2}}}{a^2 - d^2 + y^2}) +
y^2\,\arctan (\frac{a\,{\sqrt{-a^2 + d^2 - y^2}}}{a^2 - d^2 + y^2})}{2}\)

> f2 = Integrate[f1, y] // Expand;
> f2 /. y -> 0 // Simplify       → 0
> f2 = f2 /. y -> b                (* dy is integrated from 0 to b *)

\(\frac{a\,b\,{\sqrt{-a^2 - b^2 + d^2}}}{3} \\
+ \frac{b^3\,\arctan (\frac{a\,{\sqrt{-a^2 - b^2 + d^2}}}{a^2 + b^2 - d^2})}{6}
- \frac{b\,d^2\,\arctan (\frac{a\,{\sqrt{-a^2 - b^2 + d^2}}}{a^2 + b^2 - d^2})}{2}\\
+ \frac{a^3\,\arctan (\frac{b\,{\sqrt{-a^2 - b^2 + d^2}}}{a^2 + b^2 - d^2})}{6}
- \frac{a\,d^2\,\arctan (\frac{b\,{\sqrt{-a^2 - b^2 + d^2}}}{a^2 + b^2 - d^2})}{2}\\ \\
- \frac{i}{6}\,d^3\,\log (\frac{6\,{\sqrt{-a^2 - b^2 + d^2}}}
{a\,d^3\,\left( -2\,b + 2\,d \right) } +
\frac{3\,i \,\left( -\left( a^2\,d \right) - b\,d^2 + d^3 \right) }
{a^2\,d^4\,\left( -b + d \right) }) +
\frac{i}{6}\,d^3\,\log (\frac{-6\,{\sqrt{-a^2 - b^2 + d^2}}}
{a\,\left( -2\,b - 2\,d \right) \,d^3} +
\frac{3\,i \,\left( -\left( a^2\,d \right) + b\,d^2 + d^3 \right) }
{a^2\,d^4\,\left( b + d \right)})\)

> f2 /. {d->20, a->2, b->2} // N       → 79.7327 + 0. I

f2 is already hole volume formula, but it is best if we simplify, and remove the imag. part.

log(z) = log(|z|) + i * args(z), args(z) = atan(z.imag / z.real)

> f3 = Part[f2,-2,-1,-1]     → \(\frac{6\,{\sqrt{-a^2 - b^2 + d^2}}}{a\,d^3\,\left( -2\,b + 2\,d \right) } +
\frac{3\,i \,\left( -\left( a^2\,d \right) - b\,d^2 + d^3 \right) }
{a^2\,d^4\,\left( -b + d \right)}\)

> f4 = Part[f2,-1,-1,-1]     → \(\frac{-6\,{\sqrt{-a^2 - b^2 + d^2}}}
{a\,\left( -2\,b - 2\,d \right) \,d^3} +
\frac{3\,i \,\left( -\left( a^2\,d \right) + b\,d^2 + d^3 \right) }
{a^2\,d^4\,\left( b + d \right) }\)

> t3 = Part[f3,2]/I / Part[f3,1] // Simplify     → \(\frac{-a^2 + d\,\left( -b + d \right) }{a\,{\sqrt{-a^2 - b^2 + d^2}}}\)

> t4 = Part[f4,2]/I / Part[f4,1] // Simplify     → \(\frac{-a^2 + d\,\left( b + d \right) }{a\,{\sqrt{-a^2 - b^2 + d^2}}}\)

Using identity, tan(x-y) = (tan(x) - tan(y)) / (1 + tan(x) tan(y)), combine tan(2 angles)

> t34 = (t3 - t4) / (1 + t3 t4) // Simplify      → \(\frac{2 a b d \sqrt{-a^2 - b^2 + d^2}}
{d^2 (b^2-d^2) + a^2 (b^2 + d^2)}\)

> hv = f2 - Part[f2,{-2,-1}] + d^3/6 ArcTan[t34] // Simplify

Result is still messy. Let k = √(d^2 - a^2 - b^2), and expanding √(k²) as k:

> hv2 = hv /. b^2 -> d^2 - a^2 - k^2 // Simplify // PowerExpand

\(\Large \frac{2abk\; -\; \left( b^3 - 3bd^2 \right) \arctan (\frac{a}{k})\;-\;
\left( a^3 - 3ad^2 \right)\arctan (\frac{b}{k})\;-\;
d^3\arctan (\frac{2abdk}
{a^4 + d^2k^2 + a^2\left( -d^2 + k^2 \right) })}{6}\)

> hv2 /. {a->2, b->2, d->20, k->Sqrt[400-4-4]} // N     → 79.7327
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: Volume of a bead with square hole- Program approach? - Albert Chan - 06-09-2020 09:45 PM



User(s) browsing this thread: 3 Guest(s)