HP42s first major program (Double Integral) Best way to approach?
|
06-21-2020, 01:03 PM
(This post was last modified: 10-23-2020 09:02 PM by Albert Chan.)
Post: #70
|
|||
|
|||
RE: HP42s first major program (Double Integral) Best way to approach?
(06-20-2020 04:23 PM)Albert Chan Wrote: x, y = agm2(1, sqrt(1-m)) We can also move up the agm2 chain, and do this (note, m=d²) x0, y0 = agm2(1+d, 1-d) → K = pi / (2*x0) → E = K + K*y0/4 → HV1 = (m*(E+K) + (E-K))/3 = pi/(24*x0) * (y0*(m+1) + 8*m) We can get HV without E, K, not even sqrt, only agm2. For example, HV(1, 1000) lua> d, D = 1, 1000 lua> d2, D2 = d*d, D*D lua> x, y = agm2(D+d, abs(D-d)) lua> pi/(24*x) * (y*(d2+D2) + 8*d2*D2) -- HV(d,D) 785.3980652226655 Note the symmetry of HV formula, it does not require d ≤ D (no sorting ) Code: 00 { 71-Byte Prgm } |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 14 Guest(s)