Viète's Formula for PI
|
06-23-2020, 10:52 PM
(This post was last modified: 07-15-2020 05:07 PM by Gerson W. Barbosa.)
Post: #9
|
|||
|
|||
RE: Viète's Formula for PI
(06-23-2020 06:39 PM)Gerson W. Barbosa Wrote: ... The following appears to be better (more tests required) . Only one line has been changed. Anyway, here is it again: Code: Program Viete; +---+----------------------+----------------------+ | k | 2*v | ~ pi | +---+----------------------+----------------------+ | 1 | 2.828427124746190098 | 3.140960508696045357 | | 2 | 3.061467458920718174 | 3.141593674140638978 | | 3 | 3.121445152258052286 | 3.141592707164788547 | | 4 | 3.136548490545939264 | 3.141592654569488290 | | 5 | 3.140331156954752913 | 3.141592653605653769 | | 6 | 3.141277250932772868 | 3.141592653590043215 | | 7 | 3.141513801144301077 | 3.141592653589797153 | | 8 | 3.141572940367091385 | 3.141592653589793300 | | 9 | 3.141587725277159701 | 3.141592653589793240 | |10 | 3.141591421511199975 | 3.141592653589793239 | +---+----------------------+----------------------+ P.S.: This yields 1.8 digits per iteration, three times as much when compared to the plain Viète's formula. P.P.S.: This new formula is easier to program and will yield slightly more than two digits per term: \(\pi \approx 2\left ( \frac{4}{3} \times \frac{16}{15}\times \frac{36}{35}\times\frac{64}{63} \times \cdots \times \frac{ 4n ^{2}}{ 4n ^{2}-1}\right )\cdot \left ( 1+\frac{2}{8n+3+\frac{3}{8n+4+\frac{15}{8n+4+ \frac{35}{8n+4 + \frac{63}{\dots\frac{\ddots }{8n+4+\frac{4n^{2}-1}{8n+4}}} }}} } \right )\) TurboBCD program: Code:
+---+---------------------+---------------------+ | N | 2*W | 2*W*C/(C-2) | +---+---------------------+---------------------+ | 1 | 2.66666666666666666 | 3.14074074074074073 | | 2 | 2.84444444444444446 | 3.14159848961611078 | | 3 | 2.92571428571428570 | 3.14159260997123044 | | 4 | 2.97215419501133786 | 3.14159265392705764 | | 5 | 3.00217595455690690 | 3.14159265358714120 | | 6 | 3.02317019200136082 | 3.14159265358981426 | | 7 | 3.03867362888341912 | 3.14159265358979309 | | 8 | 3.05058999605551094 | 3.14159265358979325 | +---+---------------------+---------------------+ In this table N is the number of terms, W is the Wallis Product evaluated to N terms and C/(C - 2) is the correction factor. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Viète's Formula for PI - pinkman - 06-17-2020, 05:06 PM
RE: Viète's Formula for PI - ramon_ea1gth - 06-17-2020, 09:37 PM
RE: Viète's Formula for PI - pinkman - 06-18-2020, 12:51 PM
RE: Viète's Formula for PI - Gerson W. Barbosa - 06-19-2020, 11:12 PM
RE: Viète's Formula for PI - Gerson W. Barbosa - 06-23-2020, 06:39 PM
RE: Viète's Formula for PI - pinkman - 06-23-2020, 10:04 PM
RE: Viète's Formula for PI - Gerson W. Barbosa - 06-23-2020 10:52 PM
RE: Viète's Formula for PI - cdmackay - 06-19-2020, 09:00 PM
RE: Viète's Formula for PI - pinkman - 06-23-2020, 09:58 PM
RE: Viète's Formula for PI - Gerson W. Barbosa - 06-23-2020, 11:00 PM
RE: Viète's Formula for PI - pinkman - 07-16-2020, 04:42 PM
RE: Viète's Formula for PI - pinkman - 06-24-2020, 01:15 PM
RE: Viète's Formula for PI - CyberAngel - 06-29-2020, 05:52 AM
RE: Viète's Formula for PI - pinkman - 06-29-2020, 10:54 PM
RE: Viète's Formula for PI - compsystems - 06-30-2020, 03:05 PM
|
User(s) browsing this thread: 2 Guest(s)