Issues with integral
|
08-20-2020, 12:23 AM
Post: #2
|
|||
|
|||
RE: Issues with integral
(08-19-2020 09:03 PM)Mordicus1973 Wrote: int(1/(sqrt(cos(x))+sqrt(sin(x)))^4,x,0,pi/2) XCas> gaussquad(1/(sqrt(cos(x))+sqrt(sin(x)))^4,x,0,pi/2) → 0.333333333333 Doing integral symbolically, let t = tan(x) → dt = sec(x)^2 dx \(\Large{1 \over (\sqrt{\cos x}+\sqrt{\sin x})^4} = {\sec^2 x \over (1+\sqrt{\tan x})^4} \) XCas> F := int(1/(1+sqrt(t))^4, t) → \(\Large \frac{2 (-3\cdot \sqrt{t}-1)}{6 \left(\sqrt{t}+1\right)^{3}}\) Limit of x = 0 to pi/2, same as t = 0 to +inf XCas> preval(F,0, inf, t) → = 0 - (-1/3) = 1/3 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Issues with integral - Mordicus1973 - 08-19-2020, 09:03 PM
RE: Issues with integral - Albert Chan - 08-20-2020 12:23 AM
RE: Issues with integral - trojdor - 08-20-2020, 12:44 PM
RE: Issues with integral - trojdor - 08-20-2020, 12:52 PM
RE: Issues with integral - Mordicus1973 - 08-20-2020, 04:06 PM
RE: Issues with integral - roadrunner - 08-20-2020, 02:42 PM
RE: Issues with integral - Chr Yoko - 08-20-2020, 03:30 PM
RE: Issues with integral - roadrunner - 08-21-2020, 07:12 PM
RE: Issues with integral - parisse - 08-22-2020, 06:12 AM
RE: Issues with integral - Mordicus1973 - 08-22-2020, 07:23 AM
RE: Issues with integral - pinkman - 08-22-2020, 04:16 PM
RE: Issues with integral - parisse - 08-25-2020, 07:12 AM
RE: Issues with integral - pinkman - 08-25-2020, 08:12 PM
|
User(s) browsing this thread: 2 Guest(s)