Cut the Cards
|
08-25-2020, 06:14 PM
(This post was last modified: 08-28-2020 01:23 AM by Albert Chan.)
Post: #9
|
|||
|
|||
RE: Cut the Cards
(07-30-2020 09:49 PM)Jim Horn Wrote: So, it approaches x*(ln(x)+0.57721), where the latter constant is the Euler-Mascheroni constant. Replacing ln(x) by ln(x+0.5) gives much better estimate for ψ(x+1). ψ(x+1) = slope of ln(gamma(t)) at t = x+1. When x is large: \(\psi(x+1) ≈ {\ln\Gamma(x+2)\;-\;\ln\Gamma(x)\over 2}=\ln\sqrt{(x+1)(x)} ≈ \ln(x+0.5)\) >>> x = 52 >>> H = log(x+0.5) + 0.57722 >>> print format(x*H, 'g') 235.978 see https://en.wikipedia.org/wiki/Digamma_fu...roximation |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Cut the Cards - David Hayden - 07-30-2020, 08:00 PM
RE: Cut the Cards - Albert Chan - 07-30-2020, 08:58 PM
RE: Cut the Cards - Albert Chan - 08-21-2020, 11:00 PM
RE: Cut the Cards - Jim Horn - 07-30-2020, 09:49 PM
RE: Cut the Cards - John Keith - 07-31-2020, 12:24 AM
RE: Cut the Cards - Gerson W. Barbosa - 08-24-2020, 01:57 PM
RE: Cut the Cards - Albert Chan - 08-25-2020 06:14 PM
RE: Cut the Cards - Albert Chan - 07-30-2020, 10:21 PM
RE: Cut the Cards - pinkman - 08-24-2020, 09:49 PM
RE: Cut the Cards - Gerson W. Barbosa - 08-25-2020, 11:41 PM
RE: Cut the Cards - Albert Chan - 08-26-2020, 03:06 AM
RE: Cut the Cards - Gerson W. Barbosa - 08-26-2020, 08:23 AM
RE: Cut the Cards - Albert Chan - 08-26-2020, 02:13 PM
RE: Cut the Cards - Gerson W. Barbosa - 08-26-2020, 06:13 PM
RE: Cut the Cards - Gerson W. Barbosa - 08-27-2020, 10:07 PM
RE: Cut the Cards - Albert Chan - 08-28-2020, 09:26 PM
RE: Cut the Cards - Albert Chan - 08-29-2020, 04:02 PM
RE: Cut the Cards - Gerson W. Barbosa - 08-28-2020, 11:39 PM
RE: Cut the Cards - Albert Chan - 06-23-2021, 12:08 AM
|
User(s) browsing this thread: 6 Guest(s)