Half-precision Γ(x+1) [HP-12C]
|
09-15-2020, 04:30 AM
Post: #11
|
|||
|
|||
RE: Half-precision Γ(x+1) [HP-12C]
(09-13-2020 10:29 PM)Albert Chan Wrote: Another approach is not to use asymptotic formula at all, and use Lanczos algorithm. Lanczos approximation is great. The problem is the constants take up too much memory space on the 12C and even on the HP-41C, I fear. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Half-precision Γ(x+1) [HP-12C] - Gerson W. Barbosa - 02-16-2020, 12:30 AM
RE: Half-precision Γ(x+1) [HP-12C] - Albert Chan - 02-16-2020, 05:47 PM
RE: Half-precision Γ(x+1) [HP-12C] - Gerson W. Barbosa - 02-16-2020, 07:39 PM
RE: Half-precision Γ(x+1) [HP-12C] - Gerson W. Barbosa - 04-23-2020, 10:59 AM
RE: Half-precision Γ(x+1) [HP-12C] - Albert Chan - 09-12-2020, 01:15 AM
RE: Half-precision Γ(x+1) [HP-12C] - Gerson W. Barbosa - 02-17-2020, 05:43 AM
RE: Half-precision Γ(x+1) [HP-12C] - Gamo - 02-20-2020, 08:25 AM
RE: 4/5th-precision Γ(x+1) [HP-41C] - Gerson W. Barbosa - 04-27-2020, 05:12 PM
RE: Half-precision Γ(x+1) [HP-12C] - Gerson W. Barbosa - 09-12-2020, 01:14 PM
RE: Half-precision Γ(x+1) [HP-12C] - Albert Chan - 09-13-2020, 10:29 PM
RE: Half-precision Γ(x+1) [HP-12C] - Gerson W. Barbosa - 09-15-2020 04:30 AM
RE: Half-precision Γ(x+1) [HP-12C] - bshoring - 09-16-2020, 08:02 PM
|
User(s) browsing this thread: 1 Guest(s)