Post Reply 
HP50g simplifing a root
10-10-2020, 03:58 PM
Post: #22
RE: HP50g simplifing a root
(10-09-2020 05:21 PM)Albert Chan Wrote:  \(\sqrt[3]{A ± \sqrt{R}} = a ± \sqrt{r} \quad ⇒ \quad a = \large\frac{\sqrt[3]{A+\sqrt{R}}
\;+\; \sqrt[3]{A-\sqrt{R}}}{2} \)

Slightly off topics. I was curious how to calculate a accurately (assumed R > 0)
Since cube root is odd function, we pull out the sign.

a = sign(A)/2 * (³√(|A|+√R) + ³√(|A|-√R))

Last term can be rewritten as ³√(A²-R) / ³√(|A|+√R)

Let c = ³√(A²-R), d = ³√(|A|+√R)², we have:

a = sign(A)/2 * (d + c) / √d

Since both c, d are cube roots, we try identity c³ + d³ = (c + d) (c² - c d + d²)

c³ + d³ = (A² - R) + (A² + R + 2|A|√R) = |2A| * (|A|+√R) = |2A| * d√d

Substitute back in, many terms get cancelled, a = A / (c²/d - c + d) Smile

If ³√(A ± √R) can be simplified, c turns to integer (we had shown this earlier).
In fact, the whole denominator turns to integer = a² + 3r = 4a² - 3c

Code:
function calc_a(A,R)
    local c = cbrt(A*A-R)
    local d = cbrt(A*A+R + 2*abs(A)*sqrt(R))
    return A / (c*c/d - c + d)
end

lua> function test_a(A,R)
:           local q = sqrt(R)
:           return calc_a(A,R), (cbrt(A+q) + cbrt(A-q))/2
:      end
lua>
lua> test_a(26, 15^2 * 3)
2      1.9999999999999982
lua> test_a(9416, 4256^2 * 5)
11    11.000000000000005
lua> test_a(300940299,103940300^2 * 101)
99    99.00000000000006
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
HP50g simplifing a root - peacecalc - 09-29-2020, 09:22 PM
RE: HP50g simplifing a root - Albert Chan - 09-29-2020, 11:47 PM
RE: HP50g simplifing a root - Albert Chan - 09-30-2020, 02:22 AM
RE: HP50g simplifing a root - Albert Chan - 09-30-2020, 10:50 PM
RE: HP50g simplifing a root - Albert Chan - 10-01-2020, 07:31 AM
RE: HP50g simplifing a root - peacecalc - 09-30-2020, 05:33 AM
RE: HP50g simplifing a root - peacecalc - 10-01-2020, 02:20 PM
RE: HP50g simplifing a root - Albert Chan - 10-01-2020, 05:22 PM
RE: HP50g simplifing a root - peacecalc - 10-04-2020, 06:05 PM
RE: HP50g simplifing a root - Albert Chan - 10-04-2020, 11:48 PM
RE: HP50g simplifing a root - peacecalc - 10-04-2020, 07:36 PM
RE: HP50g simplifing a root - peacecalc - 10-05-2020, 11:36 AM
RE: HP50g simplifing a root - Albert Chan - 10-05-2020, 05:01 PM
RE: HP50g simplifing a root - peacecalc - 10-06-2020, 05:25 AM
RE: HP50g simplifing a root - Albert Chan - 10-06-2020, 09:40 AM
RE: HP50g simplifing a root - Albert Chan - 10-06-2020, 12:06 PM
RE: HP50g simplifing a root - Albert Chan - 10-06-2020, 04:13 PM
RE: HP50g simplifing a root - Albert Chan - 10-07-2020, 06:12 PM
RE: HP50g simplifing a root - Albert Chan - 10-09-2020, 12:20 AM
RE: HP50g simplifing a root - Albert Chan - 10-09-2020, 02:31 PM
RE: HP50g simplifing a root - Albert Chan - 10-11-2020, 06:28 PM
RE: HP50g simplifing a root - Albert Chan - 10-12-2020, 03:17 AM
RE: HP50g simplifing a root - Albert Chan - 10-24-2020, 02:19 PM
RE: HP50g simplifing a root - Albert Chan - 10-12-2020, 10:54 PM
RE: HP50g simplifing a root - CMarangon - 10-12-2020, 11:45 PM
RE: HP50g simplifing a root - grsbanks - 10-13-2020, 06:46 AM
RE: HP50g simplifing a root - Albert Chan - 10-09-2020, 05:21 PM
RE: HP50g simplifing a root - Albert Chan - 10-10-2020 03:58 PM
RE: HP50g simplifing a root - Albert Chan - 10-10-2020, 04:49 PM
RE: HP50g simplifing a root - peacecalc - 10-12-2020, 08:49 PM
RE: HP50g simplifing a root - peacecalc - 10-13-2020, 06:30 AM
RE: HP50g simplifing a root - peacecalc - 10-13-2020, 06:36 AM



User(s) browsing this thread: 3 Guest(s)