Fun math algorithms
|
10-16-2020, 04:02 PM
(This post was last modified: 10-17-2020 11:28 AM by Albert Chan.)
Post: #7
|
|||
|
|||
RE: Fun math algorithms
How to estimate car payments ?
XCas> C := I*N / (1 - (1+I)^-N) // C = |N*PMT/PV|, "compounding factor" XCas> series(C,I,polynom) \(1 +\frac{I(N+1)}{2} +\frac{I^2 (N^2-1)}{12} +\frac{I^3 (-N^2+1)}{24} +\frac{I^4 (-N^4+20N^2-19)}{720} +\frac{I^5 (N^4-10N^2+9)}{480}\) For car payments, N is usually not too big, we can use: \(\large C ≈ {(IN + 3)^2 + 3\over 12}\) This estimate does not require converting annual interest rate to monthly rate. All calculations could be done on a 4-banger Example, using U.S. 2020 numbers Quote:The average loan amount for a new car in the first quarter of 2020 was $33,631, I*N = (12*I) * (N/12) = 3.6% * 5 = 18% C-1 ≈ (IN)*(6+IN)/12 = 18% * 6.18/12 = 9.27% Fixed 2 mode: 33631 Enter 60 / → 560.52 (monthly payment, if no interest) 9.27 % → 51.96 (monthly finance charge, estimated) + → 612.48 (monthly payment, estimated) For reference, car payments (exact) = $613.31 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Fun math algorithms - Han - 09-05-2020, 10:31 PM
RE: Fun math algorithms - telemachos - 09-06-2020, 12:30 AM
RE: Fun math algorithms - Albert Chan - 09-06-2020, 12:46 AM
RE: Fun math algorithms - Han - 09-06-2020, 03:54 AM
RE: Fun math algorithms - Albert Chan - 09-08-2020, 09:59 PM
RE: Fun math algorithms - David Hayden - 09-10-2020, 03:59 PM
RE: Fun math algorithms - Albert Chan - 10-16-2020 04:02 PM
RE: Fun math algorithms - EdS2 - 10-17-2020, 08:51 AM
RE: Fun math algorithms - Albert Chan - 10-17-2020, 11:27 AM
RE: Fun math algorithms - Albert Chan - 10-17-2020, 12:32 PM
RE: Fun math algorithms - EdS2 - 10-19-2020, 07:59 AM
RE: Fun math algorithms - Albert Chan - 10-19-2020, 08:51 PM
RE: Fun math algorithms - Albert Chan - 10-19-2020, 09:33 PM
RE: Fun math algorithms - Albert Chan - 10-19-2020, 11:05 PM
|
User(s) browsing this thread: 5 Guest(s)