Post Reply 
Eigenvector mystery
10-19-2020, 07:26 PM
Post: #7
RE: Eigenvector mystery
(10-19-2020 07:13 PM)Albert Chan Wrote:  
(10-18-2020 10:54 PM)pinkman Wrote:  Eigenvalues (w) and eigenvectors (v) of a matrix (M) belong inseparably together and define each other: Mv=wv.

True, but so is M(kv) = w(kv)

For eigenvalue w, all kv are valid eigenvectors for it, as long as k ≠ 0

Also true but not relevant Wink It's all about to pick a set of linear indpendent Eigenvectors for a certain Eigenvalue, i. e. a base for the corresponding Eigenspace.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Eigenvector mystery - John Keith - 10-18-2020, 09:31 PM
RE: Eigenvector mystery - pinkman - 10-18-2020, 10:54 PM
RE: Eigenvector mystery - JurgenRo - 10-19-2020, 06:33 PM
RE: Eigenvector mystery - Albert Chan - 10-19-2020, 07:13 PM
RE: Eigenvector mystery - Thomas Okken - 10-19-2020, 07:19 PM
RE: Eigenvector mystery - JurgenRo - 10-19-2020, 07:35 PM
RE: Eigenvector mystery - JurgenRo - 10-19-2020 07:26 PM
RE: Eigenvector mystery - pinkman - 10-19-2020, 08:57 PM
RE: Eigenvector mystery - Thomas Okken - 10-19-2020, 09:42 PM
RE: Eigenvector mystery - Valentin Albillo - 10-20-2020, 12:08 AM
RE: Eigenvector mystery - JurgenRo - 10-21-2020, 06:57 PM
RE: Eigenvector mystery - JurgenRo - 10-21-2020, 06:58 PM
RE: Eigenvector mystery - Albert Chan - 10-18-2020, 11:58 PM
RE: Eigenvector mystery - John Keith - 10-24-2020, 02:03 PM
RE: Eigenvector mystery - Albert Chan - 10-26-2020, 04:25 PM
RE: Eigenvector mystery - John Keith - 10-27-2020, 12:37 PM



User(s) browsing this thread: 2 Guest(s)