Fun math algorithms
|
10-19-2020, 11:05 PM
Post: #14
|
|||
|
|||
RE: Fun math algorithms
We can use \(C_±\) to solve Time value of money problem, if I is small, and N not too big.
XCas> C(d) := 1 + N*I*(N*I+d*6)/12 + I/2; // compounding factor, d is direction XCas> eqn := C(1)*PV + C(-1)*FV + N*PMT; // variables follow cash flow sign convention eqn is linear if solving for PV, FV, PMT; quadratic if solving for I,N XCas> subst(eqn, [N, I, PV, FV] = [36, 0.04/12, 30000, -15000]) → 36*PMT + 17743.0 For previous post example, car payments = $17743/36 = $492.86 (all digits correct) What if car payments is $550, what is the APR ? XCas> proot(subst(eqn, [N, PV, PMT, FV]=[36, 30000, -550, -15000])) * 12 → [-6.12521299716, 0.0696574416048] eqn estimated APR of 6.966% (all digits correct) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Fun math algorithms - Han - 09-05-2020, 10:31 PM
RE: Fun math algorithms - telemachos - 09-06-2020, 12:30 AM
RE: Fun math algorithms - Albert Chan - 09-06-2020, 12:46 AM
RE: Fun math algorithms - Han - 09-06-2020, 03:54 AM
RE: Fun math algorithms - Albert Chan - 09-08-2020, 09:59 PM
RE: Fun math algorithms - David Hayden - 09-10-2020, 03:59 PM
RE: Fun math algorithms - Albert Chan - 10-16-2020, 04:02 PM
RE: Fun math algorithms - EdS2 - 10-17-2020, 08:51 AM
RE: Fun math algorithms - Albert Chan - 10-17-2020, 11:27 AM
RE: Fun math algorithms - Albert Chan - 10-17-2020, 12:32 PM
RE: Fun math algorithms - EdS2 - 10-19-2020, 07:59 AM
RE: Fun math algorithms - Albert Chan - 10-19-2020, 08:51 PM
RE: Fun math algorithms - Albert Chan - 10-19-2020, 09:33 PM
RE: Fun math algorithms - Albert Chan - 10-19-2020 11:05 PM
|
User(s) browsing this thread: 5 Guest(s)