Post Reply 
Fun math algorithms
10-19-2020, 11:05 PM
Post: #14
RE: Fun math algorithms
We can use \(C_±\) to solve Time value of money problem, if I is small, and N not too big.

XCas> C(d) := 1 + N*I*(N*I+d*6)/12 + I/2;       // compounding factor, d is direction
XCas> eqn := C(1)*PV + C(-1)*FV + N*PMT;       // variables follow cash flow sign convention

eqn is linear if solving for PV, FV, PMT; quadratic if solving for I,N

XCas> subst(eqn, [N, I, PV, FV] = [36, 0.04/12, 30000, -15000])
      → 36*PMT + 17743.0

For previous post example, car payments = $17743/36 = $492.86 (all digits correct)

What if car payments is $550, what is the APR ?

XCas> proot(subst(eqn, [N, PV, PMT, FV]=[36, 30000, -550, -15000])) * 12
      → [-6.12521299716, 0.0696574416048]

eqn estimated APR of 6.966% (all digits correct)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Fun math algorithms - Han - 09-05-2020, 10:31 PM
RE: Fun math algorithms - telemachos - 09-06-2020, 12:30 AM
RE: Fun math algorithms - Albert Chan - 09-06-2020, 12:46 AM
RE: Fun math algorithms - Han - 09-06-2020, 03:54 AM
RE: Fun math algorithms - Albert Chan - 09-08-2020, 09:59 PM
RE: Fun math algorithms - David Hayden - 09-10-2020, 03:59 PM
RE: Fun math algorithms - Albert Chan - 10-16-2020, 04:02 PM
RE: Fun math algorithms - EdS2 - 10-17-2020, 08:51 AM
RE: Fun math algorithms - Albert Chan - 10-17-2020, 11:27 AM
RE: Fun math algorithms - Albert Chan - 10-17-2020, 12:32 PM
RE: Fun math algorithms - EdS2 - 10-19-2020, 07:59 AM
RE: Fun math algorithms - Albert Chan - 10-19-2020, 08:51 PM
RE: Fun math algorithms - Albert Chan - 10-19-2020, 09:33 PM
RE: Fun math algorithms - Albert Chan - 10-19-2020 11:05 PM



User(s) browsing this thread: 5 Guest(s)