HP50g simplifing a root
|
10-24-2020, 02:19 PM
Post: #32
|
|||
|
|||
RE: HP50g simplifing a root
(10-11-2020 06:28 PM)Albert Chan Wrote: We have ³√(36 + 20i√7) = (-3 + i√7) / (-1)^(2/3) Mathematica gives many "simplifed" forms, here are 2 of them. (-3+i√7) * (-1-i√3)/2 = (√21+3)/2 + i/2*(3√3-√7) = (√21+3)/2 + i/2*√(34-6√21) I was curious, given √(34-6√21), how to "simplify" to (3√3-√7) ? (10-09-2020 05:21 PM)Albert Chan Wrote: \(\sqrt[3]{A ± \sqrt{R}} = a ± \sqrt{r} \quad ⇒ \quad a = \large\frac{\sqrt[3]{A+\sqrt{R}} We can use the same trick (if LHS is real, for both ±) \( \sqrt{A ± B\sqrt{c d}} = a\sqrt{c} \,±\, b\sqrt{d} \quad ⇒ \quad a\sqrt{c} = \large\frac{\sqrt{A+B\sqrt{c d}}\;+\;\sqrt{A-B\sqrt{c d}}}{2} \) lua> A, B, k = 34, -6, 21 lua> C = B * sqrt(k) lua> mean = (sqrt(A+C) + sqrt(A-C))/2 lua> mean^2 27 27 = 3*3*3 = a*a*c. We try a=c=3, d=7, so just solve for b: (3√3 + b√7)² = (27+7b²) + 6b√21 = 34 - 6√21 We have b = -1, thus √(34 - 6√21) = 3√3 - √7 It is nice that XCas do this automatically XCas> simplify(√(34-6*√(21))) → 3√3 - √7 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)