Post Reply 
About HP Prime factorization
11-02-2020, 05:40 PM
Post: #3
RE: About HP Prime factorization
[quote='parisse' pid='138432' dateline='1604303926']
factor factors over the field of coefficients of the arguments. If you want to extend this field, you must give a 2nd argument specifying the extension.
For example
Code:
P:=a*s^2+b*s+c;
l:=solve(P=0,s);
factor(P,l[0])

Thank you very much, never would have guessed that, but it makes sense.

Now, just another question, let's say I want to factor the expression: a^2 -2*a*b+b^2+s^2, it's easy to see that it is equivalent to: s^2 + (a-b)^2. I know I can get to the second expression in the HP Prime by applying the factor function like this: factor(a^2 -2*a*b+b^2)+s^2, but the point if it is possible for it to be done automatically with a function. This is particularly useful, for example, to getting the simplified expressions of typical laplace transforms with symbolic coefficients, such as the ones attached.


Attached File(s) Thumbnail(s)
   
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
About HP Prime factorization - dah145 - 11-02-2020, 06:28 AM
RE: About HP Prime factorization - parisse - 11-02-2020, 07:58 AM
RE: About HP Prime factorization - dah145 - 11-02-2020 05:40 PM
RE: About HP Prime factorization - dah145 - 11-03-2020, 03:46 AM
RE: About HP Prime factorization - dah145 - 11-19-2020, 04:12 PM



User(s) browsing this thread: 1 Guest(s)