Post Reply 
(11C) TVM for HP-11C
12-03-2020, 01:48 PM
Post: #6
RE: (11C) TVM for HP-11C
The May 1980 PPC Journal has a brief description of how the original 29C version works. A short excerpt:

Quote:All calculations call on LBL 6 placing the following results in the stack: X: PV, Y: -(BAL or FV)(1+i)^-N, L: PMT(A)[1-(1+i)^-N]/i. I(%) = 100i is found by a rearranged version of the John Kennedy and Chris Stevens Newton's method program (V6N5P10) and may take up to a couple of minutes to solve.

Also, I've used this on my 11C a couple of times. It's an excellent program.
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(11C) TVM for HP-11C - Gamo - 05-09-2019, 01:15 AM
RE: (11C) TVM for HP-11C - Gamo - 12-03-2019, 10:12 AM
RE: (11C) TVM for HP-11C - Gamo - 02-13-2020, 06:14 AM
RE: (11C) TVM for HP-11C - bshoring - 12-02-2020, 09:02 PM
RE: (11C) TVM for HP-11C - Gamo - 12-03-2020, 08:23 AM
RE: (11C) TVM for HP-11C - Dave Britten - 12-03-2020 01:48 PM
RE: (11C) TVM for HP-11C - bshoring - 12-03-2020, 05:53 PM
RE: (11C) TVM for HP-11C - Dave Britten - 12-03-2020, 06:08 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-03-2020, 08:53 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-04-2020, 08:01 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-05-2020, 01:05 AM
RE: (11C) TVM for HP-11C - Albert Chan - 12-05-2020, 03:46 AM
RE: (11C) TVM for HP-11C - Albert Chan - 05-10-2022, 09:35 PM
RE: (11C) TVM for HP-11C - Albert Chan - 05-11-2022, 01:07 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-06-2020, 02:32 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-06-2020, 04:41 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-07-2020, 06:55 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-08-2020, 03:05 PM
RE: (11C) TVM for HP-11C - Albert Chan - 05-14-2022, 12:26 PM



User(s) browsing this thread: 7 Guest(s)