Post Reply 
(11C) TVM for HP-11C
12-06-2020, 02:32 PM (This post was last modified: 06-16-2021 01:35 PM by Albert Chan.)
Post: #13
RE: (11C) TVM for HP-11C
pv_i() and fv_i() are similar, we can combine them.

Just keep pv_i(), using previous post guess_i() for the guess. Smile

Code:
function pv_i(n, a, i)              -- a = -pv/pmt
    i = i or guess_i(n, a, -1, 0)
    return function()
        local k = (1+i)^-n
        i = i - (a*i-(1-k)) / ((1-k)/i - k*n/(1+i))
        return i
    end
end

lua> g = pv_i(12, 5000/500)
lua> g(), g()
0.029228537101221044      0.029228540769133633

For fv_i() problems, where PV=0, add negative sign for the input.
In other words, fv_i(n, a) ≡ pv_i(-n, -a)

lua> g = pv_i(-12, -5000/400)
lua> g(), g()
0.007390622809688779      0.007390622804149185

This setup has another advantage, with invariant: sign(i) = sign(n-a)
For above examples, 12 > 10, -12 > -12.5, thus positive interest rate.

Update: numbers adjusted with updated guess_i()
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(11C) TVM for HP-11C - Gamo - 05-09-2019, 01:15 AM
RE: (11C) TVM for HP-11C - Gamo - 12-03-2019, 10:12 AM
RE: (11C) TVM for HP-11C - Gamo - 02-13-2020, 06:14 AM
RE: (11C) TVM for HP-11C - bshoring - 12-02-2020, 09:02 PM
RE: (11C) TVM for HP-11C - Gamo - 12-03-2020, 08:23 AM
RE: (11C) TVM for HP-11C - Dave Britten - 12-03-2020, 01:48 PM
RE: (11C) TVM for HP-11C - bshoring - 12-03-2020, 05:53 PM
RE: (11C) TVM for HP-11C - Dave Britten - 12-03-2020, 06:08 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-03-2020, 08:53 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-04-2020, 08:01 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-05-2020, 01:05 AM
RE: (11C) TVM for HP-11C - Albert Chan - 12-05-2020, 03:46 AM
RE: (11C) TVM for HP-11C - Albert Chan - 05-10-2022, 09:35 PM
RE: (11C) TVM for HP-11C - Albert Chan - 05-11-2022, 01:07 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-06-2020 02:32 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-06-2020, 04:41 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-07-2020, 06:55 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-08-2020, 03:05 PM
RE: (11C) TVM for HP-11C - Albert Chan - 05-14-2022, 12:26 PM



User(s) browsing this thread: 1 Guest(s)