Post Reply 
(11C) TVM for HP-11C
12-06-2020, 04:41 PM (This post was last modified: 06-16-2021 01:37 PM by Albert Chan.)
Post: #14
RE: (11C) TVM for HP-11C
(12-06-2020 02:32 PM)Albert Chan Wrote:  For fv_i() problems, where PV=0, add negative sign for the input.
In other words, fv_i(n, a) ≡ pv_i(-n, -a)

Proof:

Let K = (1+I)^N. TVM equation (NFV = 0):

PV*K + PMT*(K-1)/I + FV = 0

Travel backward in time: (N, PV, PMT, FV) := (-N, FV, -PMT, PV)

FV/K - PMT*(1/K-1)/I + PV = 0

Multiply by K, we recover the original TVM equation.

⇒ fv_i(n, a) = fv_i(n, FV/-PMT) = pv_i(-n, PV/PMT) = pv_i(-n, -a)

Since guess_i() is based on TVM, it can travel backward in time too. Smile
Example taken from Fun Math Algorithms, car lease APR estimate.

lua> n, pv, pmt, fv = 36, 30000, -550, -15000
lua> guess_i(n, pv, pmt, fv) * 1200
6.9657545218584485
lua> guess_i(-n, fv, -pmt, pv) * 1200
6.9657545218584485

Update: numbers adjusted with updated guess_i()
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(11C) TVM for HP-11C - Gamo - 05-09-2019, 01:15 AM
RE: (11C) TVM for HP-11C - Gamo - 12-03-2019, 10:12 AM
RE: (11C) TVM for HP-11C - Gamo - 02-13-2020, 06:14 AM
RE: (11C) TVM for HP-11C - bshoring - 12-02-2020, 09:02 PM
RE: (11C) TVM for HP-11C - Gamo - 12-03-2020, 08:23 AM
RE: (11C) TVM for HP-11C - Dave Britten - 12-03-2020, 01:48 PM
RE: (11C) TVM for HP-11C - bshoring - 12-03-2020, 05:53 PM
RE: (11C) TVM for HP-11C - Dave Britten - 12-03-2020, 06:08 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-03-2020, 08:53 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-04-2020, 08:01 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-05-2020, 01:05 AM
RE: (11C) TVM for HP-11C - Albert Chan - 12-05-2020, 03:46 AM
RE: (11C) TVM for HP-11C - Albert Chan - 05-10-2022, 09:35 PM
RE: (11C) TVM for HP-11C - Albert Chan - 05-11-2022, 01:07 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-06-2020, 02:32 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-06-2020 04:41 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-07-2020, 06:55 PM
RE: (11C) TVM for HP-11C - Albert Chan - 12-08-2020, 03:05 PM
RE: (11C) TVM for HP-11C - Albert Chan - 05-14-2022, 12:26 PM



User(s) browsing this thread: 7 Guest(s)