Variant of the Secant Method
|
12-09-2020, 04:38 PM
(This post was last modified: 12-09-2020 11:21 PM by Albert Chan.)
Post: #3
|
|||
|
|||
RE: Variant of the Second Method
Let's try solving x, for sinc(x) = 1/6.5
lua> function f(x) return sin(x)/x - 1/6.5 end lua> function secant(x1,y1,x2,y2) return x1-y1/(y2-y1)*(x2-x1) end lua> x1, x2 = 2.711, 2.712 lua> y1, y2 = f(x1) , f(x2) lua> x3 = secant(x1,y1, x2,y2) lua> y3 = f(x3) lua> x3 2.7113129474671775 -- Inverse Interpolation, assumed f(x) is strictly increasing or descreasing around root -- Fit x = g(y), then evaluate g(0) lua> x12 = (x2-x1)/(y2-y1) lua> x23 = (x3-x2)/(y3-y2) lua> x123 = (x23-x12)/(y3-y1) lua> x3 + (0-y3)*(x23 + (0-y2)*x123) 2.711312910356982 -- Aikten interpolation, as 1 liner: inner secant = x4, outer secant = x5 -- y1 x1 -- y2 x2 x3 -- y3 x3 x4 x5 lua> secant(secant(x3,y3, x1,y1),y3, x3,y2) 2.711312910356982 -- improved secant, interpolate for slope lua> y23 = (y3-y2)/(x3-x2) lua> y12 = (y2-y1)/(x2-x1) lua> y123 = (y23-y12)/(x3-x1) lua> slope = y23 + (x3-x2)*y123 lua> x3 - y3/slope 2.7113129103569826 -- Newton's method, actual slope lua> x, y = x3, y3 lua> slope = (x*cos(x) - sin(x))/x^2 lua> x - y/slope 2.711312910356983 For reference, I used ASINC, for Free-42 Decimal. Comparing apples to apples, input is float(1/6.5) = 0x1.3b13b13b13b14p-3 5542891849071380 2 55 X^Y รท XEQ "ASINC" 2.71131291035698331469084928874754 All 3 methods gives excellent results, doubling accuracy of x3 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Variant of the Secant Method - ttw - 12-09-2020, 04:33 AM
RE: Variant of the Second Method - Valentin Albillo - 12-09-2020, 05:40 AM
RE: Variant of the Second Method - Albert Chan - 12-09-2020 04:38 PM
RE: Variant of the Secant Method - Albert Chan - 12-09-2020, 11:51 PM
RE: Variant of the Secant Method - Namir - 12-10-2020, 01:54 PM
RE: Variant of the Secant Method - Namir - 12-10-2020, 02:56 PM
RE: Variant of the Secant Method - Albert Chan - 12-11-2020, 04:34 PM
RE: Variant of the Secant Method - Albert Chan - 12-11-2023, 03:25 PM
RE: Variant of the Secant Method - Albert Chan - 12-11-2020, 04:46 PM
RE: Variant of the Secant Method - Namir - 12-12-2020, 04:22 AM
RE: Variant of the Secant Method - ttw - 12-12-2020, 02:41 PM
RE: Variant of the Secant Method - Albert Chan - 12-12-2020, 04:27 PM
RE: Variant of the Secant Method - Thomas Klemm - 12-16-2023, 08:11 PM
|
User(s) browsing this thread: 1 Guest(s)