Yet another π formula
|
01-07-2021, 12:57 PM
(This post was last modified: 01-07-2021 12:58 PM by Gerson W. Barbosa.)
Post: #10
|
|||
|
|||
RE: Yet another π formula
(01-06-2021 01:32 AM)Albert Chan Wrote:Quote:\(\lim_{n\rightarrow \infty } \left [ \frac{1}{1\cdot 3}-\frac{1}{3\cdot 5}+\frac{1}{5\cdot 7}-\frac{1}{7\cdot 9}+\frac{1}{9\cdot 11}-\frac{1}{11\cdot 13}+\frac{1}{13\cdot 15}-\frac{1}{15 \cdot 17}\pm \cdots +\frac{(-1)^{n-1}}{4n^{2}-1}\right ]=\frac{\pi }{4}-\frac{1}{2}\) Great! The continued fraction part is left unproved, however. But that would not be easy, I presume. |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)