Spence function
|
01-11-2021, 06:16 PM
(This post was last modified: 01-12-2021 01:00 AM by Albert Chan.)
Post: #2
|
|||
|
|||
RE: Spence function
(01-07-2021 09:37 PM)Valentin Albillo Wrote: I think Spence's function (Dilogarithms) is the key to proof I = pi^2/4, for any k After transformation, we have I = ∫(g(t) dt, t = 0 .. 1) \(\exp(g(t)·k\,t) = \Large {(1+(1+t)^k)·(1+({1\over t}+1)^k) \over (1+(1-t)^k)·(1+({1\over t}-1)^k)} = {(1+(1+t)^k)·(t^k+(1+t)^k) \over (1+(1-t)^k)·(t^k+(1-t)^k)}\) For now, assume k is positive integer → numerator is polynomial of t, with degree 2k. Let W = exp((2n+1)/k*pi*i), n = 0 .. k-1. In other words, W = roots of x^k = -1 roots of numerator , t = W-1, 1/(W-1) roots of denominator, t = 1-W, 1/(W+1) Consider just 1 of W (we have k of them), factor it out, scaled away k, and integrate: \(\displaystyle \int _0^1 \ln\left( {(1-{t \over w-1})·(1-t(w-1)) \over (1-{t \over 1-w})·(1-t(w+1)) }\right) {dt \over t} \normalsize = -Li_2({1\over w-1}) + Li_2({1\over 1-w}) - Li_2(w-1) + Li_2(w+1) \) I = average of all the k pieces, dropped imaginary parts (since I is real) For example, for k = 7, these are the integral pieces. >>> from mpmath import * >>> Li2 = lambda x: polylog(2, x) >>> k = 7 >>> W = [exp((2*n+1)/k*pi*1j) for n in range(k)] >>> for w in W: print -Li2(1/(w-1)) + Li2(1/(1-w)) - Li2(w-1) + Li2(w+1) ... (2.46740110027234 + 5.0951007958138j) (2.46740110027234 + 2.21291211873152j) (2.46740110027234 + 0.940187304494618j) (2.46740110027234 + 1.22410719457408e-16j) (2.46740110027234 - 0.940187304494618j) (2.46740110027234 - 2.21291211873152j) (2.46740110027234 - 5.0951007958138j) All the real parts have the same size = pi^2/4 What happened if k is not integer ? Lets try k = 2.021 Amazingly, for any non-zero real k, real part of the integral piece still = pi^2/4 >>> w = exp(pi*1j/2.021) >>> print -Li2(1/(w-1)) + Li2(1/(1-w)) - Li2(w-1) + Li2(w+1) (2.46740110027234 + 1.85770404643526j) Note: this only show how integral evaluated to the same value, for different k's It is still not a proof, but much closer than what I had before ... |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Spence function - Albert Chan - 01-11-2021, 06:13 PM
RE: Spence function - Albert Chan - 01-11-2021 06:16 PM
RE: Spence function - Albert Chan - 01-12-2021, 02:17 PM
RE: Spence function - Albert Chan - 01-12-2021, 05:41 PM
RE: Spence function - Albert Chan - 01-13-2021, 05:47 PM
RE: Spence function - C.Ret - 01-12-2021, 05:28 PM
RE: Spence function - Albert Chan - 01-12-2021, 07:49 PM
RE: Spence function - C.Ret - 01-12-2021, 08:24 PM
RE: Spence function - Albert Chan - 01-12-2021, 11:24 PM
RE: Spence function - Albert Chan - 01-14-2021, 01:55 PM
RE: Spence function - Albert Chan - 01-14-2021, 03:30 PM
RE: Spence function - Albert Chan - 01-31-2021, 03:24 PM
RE: Spence function - Albert Chan - 04-04-2021, 10:57 PM
RE: Spence function - Albert Chan - 04-05-2021, 03:24 AM
RE: Spence function - Albert Chan - 04-05-2021, 04:58 PM
RE: Spence function - Albert Chan - 04-11-2021, 03:22 AM
RE: Spence function - Albert Chan - 05-04-2021, 03:17 PM
RE: Spence function - Albert Chan - 03-20-2022, 04:33 PM
|
User(s) browsing this thread: 3 Guest(s)