Spence function
|
01-12-2021, 07:49 PM
Post: #6
|
|||
|
|||
RE: Spence function
(01-12-2021 05:28 PM)C.Ret Wrote:(01-11-2021 06:13 PM)Albert Chan Wrote: I just learned how to proof this, using Spence's function (dilogarithm) Just move complex z inside the function. Let \(u = z\; x\;,\;du = z\;dx\) \(\displaystyle Li_2(z) = - \int _0^1 {\ln(1-z\;x) \over x} dx\) This substitution of variable give neat result. Example, let \(u = x^k\;,\;du = k\;x^{k-1}\;dx\) \(\displaystyle -k \int _0^1 {\ln(1-x^k) \over x} dx = -k \int _0^1 {\ln(1-u) \over x} {du \over k\;x^{k-1}} = - \int _0^1 {\ln(1-u) \over u} du = Li_2(1) = {\pi^2 \over 6} \) I thought above formula had something to do with Valentin's puzzle ... but no luck. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Spence function - Albert Chan - 01-11-2021, 06:13 PM
RE: Spence function - Albert Chan - 01-11-2021, 06:16 PM
RE: Spence function - Albert Chan - 01-12-2021, 02:17 PM
RE: Spence function - Albert Chan - 01-12-2021, 05:41 PM
RE: Spence function - Albert Chan - 01-13-2021, 05:47 PM
RE: Spence function - C.Ret - 01-12-2021, 05:28 PM
RE: Spence function - Albert Chan - 01-12-2021 07:49 PM
RE: Spence function - C.Ret - 01-12-2021, 08:24 PM
RE: Spence function - Albert Chan - 01-12-2021, 11:24 PM
RE: Spence function - Albert Chan - 01-14-2021, 01:55 PM
RE: Spence function - Albert Chan - 01-14-2021, 03:30 PM
RE: Spence function - Albert Chan - 01-31-2021, 03:24 PM
RE: Spence function - Albert Chan - 04-04-2021, 10:57 PM
RE: Spence function - Albert Chan - 04-05-2021, 03:24 AM
RE: Spence function - Albert Chan - 04-05-2021, 04:58 PM
RE: Spence function - Albert Chan - 04-11-2021, 03:22 AM
RE: Spence function - Albert Chan - 05-04-2021, 03:17 PM
RE: Spence function - Albert Chan - 03-20-2022, 04:33 PM
|
User(s) browsing this thread: 1 Guest(s)