Spence function
|
01-12-2021, 08:24 PM
(This post was last modified: 01-14-2021 04:53 PM by C.Ret.)
Post: #7
|
|||
|
|||
RE: Spence function
(01-12-2021 07:49 PM)Albert Chan Wrote: Just move complex z inside the function. Let \(u = z\; x\;,\;du = z\;dx\) Thank you , for this quick response. You exactly respond to my question. No more worries now about complex values in integration's limits. Effectively, integrating from \(0\) to \(z\) on variable \(du\) give the same integration as from \(0\) to \(1\) on variable \(dx\) where \(x=\frac{u}{z}\) You make my day. I learn something today. (I also discover that Latex is enable on this forum. Two nice discoveries in one post ). As usual, a lot of nice people to meet here. Thank you again. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Spence function - Albert Chan - 01-11-2021, 06:13 PM
RE: Spence function - Albert Chan - 01-11-2021, 06:16 PM
RE: Spence function - Albert Chan - 01-12-2021, 02:17 PM
RE: Spence function - Albert Chan - 01-12-2021, 05:41 PM
RE: Spence function - Albert Chan - 01-13-2021, 05:47 PM
RE: Spence function - C.Ret - 01-12-2021, 05:28 PM
RE: Spence function - Albert Chan - 01-12-2021, 07:49 PM
RE: Spence function - C.Ret - 01-12-2021 08:24 PM
RE: Spence function - Albert Chan - 01-12-2021, 11:24 PM
RE: Spence function - Albert Chan - 01-14-2021, 01:55 PM
RE: Spence function - Albert Chan - 01-14-2021, 03:30 PM
RE: Spence function - Albert Chan - 01-31-2021, 03:24 PM
RE: Spence function - Albert Chan - 04-04-2021, 10:57 PM
RE: Spence function - Albert Chan - 04-05-2021, 03:24 AM
RE: Spence function - Albert Chan - 04-05-2021, 04:58 PM
RE: Spence function - Albert Chan - 04-11-2021, 03:22 AM
RE: Spence function - Albert Chan - 05-04-2021, 03:17 PM
RE: Spence function - Albert Chan - 03-20-2022, 04:33 PM
|
User(s) browsing this thread: 1 Guest(s)