Post Reply 
Spence function
01-12-2021, 11:24 PM
Post: #8
RE: Spence function
(01-12-2021 05:28 PM)C.Ret Wrote:  How are mathematicians dealing with the computation of, for example :

[Image: gif.latex?Li_2%282+3i%29%3D...D%7Bu%7Ddu]

(01-12-2021 02:17 PM)Albert Chan Wrote:  Li2(-1) = -pi^2/12
Li2(2) = (pi^2/6 - Li2(-1)) - ln(2)*pi*i = pi^2/4 - ln(2)*pi*i

I was playing around, and tried integrating using Li2(2) as base.
0 to 2+3i → 0 to 2, then 2 to 2+3i

Turns out, we have to use the conjugate of the base.
Anyone knows how and when we apply the conjugate ?

XCas> b := pi^2/4 - ln(2)*pi*i                                   // Li2(2)
XCas> float(b)
2.46740110027 - 2.1775860903*i

XCas> conj(b) - i*int(ln(-1-x*i)/(2+x*i), x = 0. .. 3)    // let u = 2+x*i, du = i*dx
-0.280988055379 + 3.01725120637*i

XCas> -int(ln(1-(2+3i)*x)/x, x = 0. .. 1)                     // confirmed Li2(2+3i)
-0.280988055378 + 3.01725120637*i

FYI, picking a closer base speed up integration. (about 5X for above example)
The problem is how to make it right ...
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Spence function - Albert Chan - 01-11-2021, 06:13 PM
RE: Spence function - Albert Chan - 01-11-2021, 06:16 PM
RE: Spence function - Albert Chan - 01-12-2021, 02:17 PM
RE: Spence function - Albert Chan - 01-12-2021, 05:41 PM
RE: Spence function - Albert Chan - 01-13-2021, 05:47 PM
RE: Spence function - C.Ret - 01-12-2021, 05:28 PM
RE: Spence function - Albert Chan - 01-12-2021, 07:49 PM
RE: Spence function - C.Ret - 01-12-2021, 08:24 PM
RE: Spence function - Albert Chan - 01-12-2021 11:24 PM
RE: Spence function - Albert Chan - 01-14-2021, 01:55 PM
RE: Spence function - Albert Chan - 01-14-2021, 03:30 PM
RE: Spence function - Albert Chan - 01-31-2021, 03:24 PM
RE: Spence function - Albert Chan - 04-04-2021, 10:57 PM
RE: Spence function - Albert Chan - 04-05-2021, 03:24 AM
RE: Spence function - Albert Chan - 04-05-2021, 04:58 PM
RE: Spence function - Albert Chan - 04-11-2021, 03:22 AM
RE: Spence function - Albert Chan - 05-04-2021, 03:17 PM
RE: Spence function - Albert Chan - 03-20-2022, 04:33 PM



User(s) browsing this thread: 4 Guest(s)