Post Reply 
Spence function
01-14-2021, 03:30 PM
Post: #11
RE: Spence function
(01-14-2021 01:55 PM)Albert Chan Wrote:  >>> a, b, x = 1-j, 2+3j, 1.25
>>> conj(Li2(a) + F(a,x)) + F(x,b)                # == conj(Li2(x)) + F(x,b)
(-0.28098805537806 + 3.01725120636941j)

This is how WolframAlpha interpret F(a, b):

∫(-ln(1-x)/x, x = 1-I .. 2+3I)
= (Li2(2+3I) - conj(Li2(1.25))) + (Li2(1.25) - Li2(1-I))
= (Li2(2+3I) - Li2(1-I)) + (Li2(1.25) - conj(Li2(1.25)))
= (Li2(2+3I) - Li2(1-I)) + 2I * im(Li2(1.25))

Do not calculate F(a, b) directly !
Because of the discontinuity crossing the real axis, it it very hard to evaluate accurately.

Since we are interested with Li2(2+3I), interpolation of integral limits is not necessary.
Any real x will do. Preferably Li2(x) is also real, so no need to worry about conjugates.

>>> pi*pi/6 + F(1, 2+3j)       # x = 1
(-0.280988055378061 + 3.01725120636941j)

This simple shift doubled the speed of integration, compared against F(0, 2+3j)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Spence function - Albert Chan - 01-11-2021, 06:13 PM
RE: Spence function - Albert Chan - 01-11-2021, 06:16 PM
RE: Spence function - Albert Chan - 01-12-2021, 02:17 PM
RE: Spence function - Albert Chan - 01-12-2021, 05:41 PM
RE: Spence function - Albert Chan - 01-13-2021, 05:47 PM
RE: Spence function - C.Ret - 01-12-2021, 05:28 PM
RE: Spence function - Albert Chan - 01-12-2021, 07:49 PM
RE: Spence function - C.Ret - 01-12-2021, 08:24 PM
RE: Spence function - Albert Chan - 01-12-2021, 11:24 PM
RE: Spence function - Albert Chan - 01-14-2021, 01:55 PM
RE: Spence function - Albert Chan - 01-14-2021 03:30 PM
RE: Spence function - Albert Chan - 01-31-2021, 03:24 PM
RE: Spence function - Albert Chan - 04-04-2021, 10:57 PM
RE: Spence function - Albert Chan - 04-05-2021, 03:24 AM
RE: Spence function - Albert Chan - 04-05-2021, 04:58 PM
RE: Spence function - Albert Chan - 04-11-2021, 03:22 AM
RE: Spence function - Albert Chan - 05-04-2021, 03:17 PM
RE: Spence function - Albert Chan - 03-20-2022, 04:33 PM



User(s) browsing this thread: 2 Guest(s)