Post Reply 
(complex) root of unity
01-16-2021, 06:02 PM (This post was last modified: 01-16-2021 06:05 PM by salvomic.)
Post: #11
RE: (complex) root of unity
(01-16-2021 05:47 PM)robmio Wrote:  if you rewrite the program as CAS, it works.

yes, actually.
Now:
Code:

#cas
rootsOfOne(n):=
BEGIN
RETURN e^(2*PI**range(n)/n);
END;

rootsOfZ(z, n):=
BEGIN
RETURN z^(1/n) * rootsOfOne(n);
END;

#end

it works, but I get first a warning "Recursive" (see attached images).
Then, trying with "3+4i" I get a little square in the matrix (second item): I don't know what's the reason...

Salvo


Attached File(s) Thumbnail(s)
       

∫aL√0mic (IT9CLU) :: HP Prime 50g 41CX 71b 42s 39s 35s 12C 15C - DM42, DM41X - WP34s Prime Soft. Lib
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(complex) root of unity - salvomic - 01-16-2021, 02:47 PM
RE: (complex) root of unity - rprosperi - 01-16-2021, 02:57 PM
RE: (complex) root of unity - salvomic - 01-16-2021, 03:53 PM
RE: (complex) root of unity - robmio - 01-16-2021, 03:24 PM
RE: (complex) root of unity - salvomic - 01-16-2021, 03:56 PM
RE: (complex) root of unity - Albert Chan - 01-16-2021, 03:40 PM
RE: (complex) root of unity - salvomic - 01-16-2021, 03:58 PM
RE: (complex) root of unity - salvomic - 01-16-2021, 05:27 PM
RE: (complex) root of unity - robmio - 01-16-2021, 05:42 PM
RE: (complex) root of unity - robmio - 01-16-2021, 05:47 PM
RE: (complex) root of unity - salvomic - 01-16-2021 06:02 PM
RE: (complex) root of unity - robmio - 01-16-2021, 06:12 PM
RE: (complex) root of unity - salvomic - 01-16-2021, 06:17 PM
RE: (complex) root of unity - robmio - 01-16-2021, 06:28 PM
RE: (complex) root of unity - salvomic - 01-16-2021, 06:37 PM
RE: (complex) root of unity - robmio - 01-16-2021, 06:40 PM
RE: (complex) root of unity - salvomic - 01-16-2021, 06:48 PM
RE: (complex) root of unity - Jon Higgins - 12-26-2021, 11:45 AM



User(s) browsing this thread: 4 Guest(s)