Post Reply 
HP 42S, DM 42 Integral
02-14-2021, 02:22 PM
Post: #12
RE: HP 42S, DM 42 Integral
(02-13-2021 01:38 AM)Thomas Okken Wrote:  I am a bit surprised because I have observed the death spiral towards zero before ...

It may be hard to see death spiral to 0, with INTEG u-transformation, and romberg extrapolation.
However, if we evaluate integral other ways, it is not hard to show one.

\(\displaystyle AGM(a,b) = {(a+b)(\pi/4) \over K\left(k = {a-b \over a+b}\right)} \)

AGM(a,b) = arithmetic-geometic mean of a, b (above is equation 8)
K = complete elliptic integral of first kind
k = elliptic modulus

(pi/2) / K(1) = AGM(2,0) = AGM(1,0) = AGM(1/2,0) = AGM(1/4,0) = ... = 0

Arithmetic mean forms a death-spiral toward zero.
Thus, it may be better to test geometric mean convergence, AGM(2,0) = AGM(1,0) = 0
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
HP 42S, DM 42 Integral - lrdheat - 02-12-2021, 10:44 PM
RE: HP 42S, DM 42 Integral - lrdheat - 02-12-2021, 10:46 PM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-12-2021, 10:58 PM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-12-2021, 11:32 PM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-13-2021, 12:28 AM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-13-2021, 01:38 AM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-14-2021 02:22 PM
RE: HP 42S, DM 42 Integral - lrdheat - 02-13-2021, 02:26 AM
RE: HP 42S, DM 42 Integral - lrdheat - 02-13-2021, 03:03 AM
RE: HP 42S, DM 42 Integral - lrdheat - 02-14-2021, 03:14 AM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-14-2021, 03:27 AM
RE: HP 42S, DM 42 Integral - J-F Garnier - 02-14-2021, 08:57 AM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-14-2021, 09:10 PM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-15-2021, 01:13 PM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-15-2021, 02:06 PM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-15-2021, 04:33 PM



User(s) browsing this thread: 1 Guest(s)