Post Reply 
HP 42S, DM 42 Integral
02-14-2021, 09:10 PM
Post: #13
RE: HP 42S, DM 42 Integral
(02-14-2021 08:57 AM)J-F Garnier Wrote:  We discussed the HP algorithm last year, see here for some indications on the terminating condition.

Thanks, I will look into that. It doesn't look like it would help with the death spiral scenario, but for the case at hand, where the approximation just bounces around, a better error estimate would definitely improve things, and allow the iteration to end much more quickly.
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
HP 42S, DM 42 Integral - lrdheat - 02-12-2021, 10:44 PM
RE: HP 42S, DM 42 Integral - lrdheat - 02-12-2021, 10:46 PM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-12-2021, 10:58 PM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-12-2021, 11:32 PM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-13-2021, 12:28 AM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-13-2021, 01:38 AM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-14-2021, 02:22 PM
RE: HP 42S, DM 42 Integral - lrdheat - 02-13-2021, 02:26 AM
RE: HP 42S, DM 42 Integral - lrdheat - 02-13-2021, 03:03 AM
RE: HP 42S, DM 42 Integral - lrdheat - 02-14-2021, 03:14 AM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-14-2021, 03:27 AM
RE: HP 42S, DM 42 Integral - J-F Garnier - 02-14-2021, 08:57 AM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-14-2021 09:10 PM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-15-2021, 01:13 PM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-15-2021, 02:06 PM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-15-2021, 04:33 PM



User(s) browsing this thread: 1 Guest(s)