Post Reply 
HP 42S, DM 42 Integral
02-15-2021, 04:33 PM
Post: #16
RE: HP 42S, DM 42 Integral
(02-15-2021 02:06 PM)Thomas Okken Wrote:  The problem with that is that you don't know what "tiny" is.

May be we do, if we estimate size of M = ∫(|f(x)|, x= a .. b)

OP example, F = ∫(sin(x), x= 0 .. 2*pi)

M = ∫(|sin(x)|, x= 0 .. 2*pi) = 4. (rough estimate OK)

That meant rounding errors of M might be maximum of 4e-33 (Free-42 Decimal)
x = a + k*h might also generate some errors, so above estimate of 'tiny' is not too bad.

Any estimated |F| below 'tiny' might be considered 0.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
HP 42S, DM 42 Integral - lrdheat - 02-12-2021, 10:44 PM
RE: HP 42S, DM 42 Integral - lrdheat - 02-12-2021, 10:46 PM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-12-2021, 10:58 PM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-12-2021, 11:32 PM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-13-2021, 12:28 AM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-13-2021, 01:38 AM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-14-2021, 02:22 PM
RE: HP 42S, DM 42 Integral - lrdheat - 02-13-2021, 02:26 AM
RE: HP 42S, DM 42 Integral - lrdheat - 02-13-2021, 03:03 AM
RE: HP 42S, DM 42 Integral - lrdheat - 02-14-2021, 03:14 AM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-14-2021, 03:27 AM
RE: HP 42S, DM 42 Integral - J-F Garnier - 02-14-2021, 08:57 AM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-14-2021, 09:10 PM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-15-2021, 01:13 PM
RE: HP 42S, DM 42 Integral - Thomas Okken - 02-15-2021, 02:06 PM
RE: HP 42S, DM 42 Integral - Albert Chan - 02-15-2021 04:33 PM



User(s) browsing this thread: 2 Guest(s)