Post Reply 
Gamma function using Spouge Approximation
06-13-2014, 09:57 PM
Post: #4
RE: Gamma function using Spouge Approximation
(06-13-2014 12:35 PM)Namir Wrote:  Thanks for your correction Willy. I corrected step 68 as you suggested.

Also thanks for fantastic HP-67/97 emulators for the iPad!

Namir

Thank you for the kudos. BTW, your sometimes "unorthodox" listings caused me quite a bit of headache while implementing the new source code translation capability of the emulators. But finally things are coming together.

So
Code:

25 2
26 4
27 0
28 CHS
29 GSB 2
30 252
31 GSB 2
32 120
translates into:
Code:

001:  02         2  
002:  04         4  
003:  00         0  
004:  42         CHS  
005:  31 22 02   GSB 2
006:  02         2  
007:  05         5  
008:  02         2  
009:  31 22 02   GSB 2
010:  01         1  
011:  02         2  
012:  00         0
and
Code:

62 RCL 0
63 0.5
into:
Code:

001:  34 00      RCL 0  
002:  00         0  
003:  83         .  
004:  05         5

In fact, you may even enter
Code:

a
B
i
I
and get:
Code:

001:  32 22 11   GSB a
002:  31 22 12   GSB B
003:  34 24      RCL (i)  
004:  35 34      RC I
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: Gamma function using Spouge Approximation - Willy R. Kunz - 06-13-2014 09:57 PM



User(s) browsing this thread: 1 Guest(s)