Post Reply 
[VA] Short & Sweet Math Challenge #25 "San Valentin's Special: Weird Math"
02-28-2021, 01:21 PM
Post: #43
RE: [VA] Short & Sweet Math Challenge #25 "San Valentin's Special: Weird Math...
(02-18-2021 09:28 AM)Werner Wrote:  The key to the value of the integral in #3 is to realize that the integral is symmetric in the integral boundaries. Basically it is

integral(a,b,f(a+b-x)/(f(x) + f(a+b-x)),dx)

Without noticing the symmetry, if we "fold" the integral, we get the same result.

[Image: TEST6-DISREGARD.jpg]

Let f(x) be integrand of above integral.

I = ∫(f(x), x = 1 .. φ)
  = ∫(f(x) + f(1+φ-x), x = 1 .. φ) / 2
  = ∫(f(x) + f(φ²-x), x = 1 .. φ) / 2
  = ∫(1, x = 1 .. φ) / 2
  = (φ-1)/2
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: [VA] Short & Sweet Math Challenge #25 "San Valentin's Special: Weird Math... - Albert Chan - 02-28-2021 01:21 PM



User(s) browsing this thread: 4 Guest(s)