[VA] SRC #009 - Pi Day 2021 Special
|
03-17-2021, 03:03 AM
(This post was last modified: 03-17-2021 02:14 PM by robve.)
Post: #25
|
|||
|
|||
RE: [VA] SRC #009 - Pi Day 2021 Special
(03-17-2021 02:32 AM)Albert Chan Wrote:(03-16-2021 09:09 PM)robve Wrote: $$ \arctan u - \arctan v = \arctan\frac{u-v}{1+uv} $$ Right. I did not include the two necessary conditions since these hold, note the (mod π): $$ \arctan u - \arctan v = \arctan\frac{u-v}{1+uv}\quad \pmod \pi,\quad uv\neq 1 $$ EDIT: the arctan identity comes from $$ \tan \alpha \pm \tan \beta = \frac{\tan \alpha \pm \tan \beta}{1\mp \tan \alpha\, \tan \beta} $$ Since 0<=e<π and 0<=(e-1)/(e+1)<π we have (e.g. verify numerically) $$\tan\arctan\mathrm{e}=\mathrm{e}; \quad \tan\arctan\frac{\mathrm{e}-1}{\mathrm{e}+1} = \frac{\mathrm{e}-1}{\mathrm{e}+1}$$ Then $$ \alpha=\arctan\mathrm{e};\quad \beta=\arctan \frac{\mathrm{e}-1}{\mathrm{e}+1};\quad \frac{\tan \alpha - \tan \beta}{1+ \tan \alpha\, \tan \beta} = \frac{\mathrm{e} - \frac{\mathrm{e}-1}{\mathrm{e}+1}}{1+\mathrm{e}\frac{\mathrm{e}-1}{\mathrm{e}+1}} = 1 $$ Generally, tan has period π $$ \tan(k\pi+\theta) = \theta $$ for any integer k. - Rob "I count on old friends to remain rational" |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)