[VA] SRC #009 - Pi Day 2021 Special
|
03-22-2021, 05:33 PM
Post: #37
|
|||
|
|||
RE: [VA] SRC #009 - Pi Day 2021 Special
(03-21-2021 06:48 PM)robve Wrote: Proof (I've simplified this somewhat): A comment about the last (missing) step. Instead of using half-angle formula, cos(x/2)^2 = (1+cos(x))/2, then integrate, fold the integral. \(\displaystyle \int _a^b f(x)\;dx = \int _a^b {f(x) + f(a+b-x) \over 2}\;dx \) \(\displaystyle 4 \int_0^{\pi \over 2} \cos^2 θ\;dθ = 2 \int_0^{\pi \over 2} (\cos^2 θ \;+\; \sin^2 θ)\;dθ = 2 \int_0^{\pi \over 2} 1\;dθ = \pi \) This is the same trick used in [VA] Short & Sweet Math Challenge #25. (02-28-2021 02:18 AM)Valentin Albillo Wrote: My original solution for "Concoction the Third: Weird Integral" |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)