Accuracy of numsolve in TI, CASIO
|
03-26-2021, 09:55 PM
Post: #2
|
|||
|
|||
RE: Accuracy of numsolve in TI, CASIO
Assuming calculator use central-difference derivative formula, this might answer your question.
Is there a general formula for estimating the step size h in numerical differentiation formulas ? Example, estimate (ln(x))' at x=2: lua> function D(x,h) return (log(x+h)-log(x-h))/(2*h) end lua> for i=4,8 do print(i, D(2, 10^-i)) end 4 0.5000000004168335 5 0.5000000000088269 6 0.5000000000143777 7 0.49999999973682185 8 0.49999999696126407 Interestingly, optimal h for this example is also about 1e-5: At the cost of more computation, we can use bigger h, and extrapolate for slope. (similar to Romberg's integration, extrapolate from raw trapezoids, or rectangles) lua> h = 1e-3 lua> d1 = D(2,h) lua> d2 = D(2,h/2) lua> d1, d2, d2+(d2-d1)/3 0.500000041666615 0.5000000104167235 0.5000000000000929 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Accuracy of numsolve in TI, CASIO - lrdheat - 03-26-2021, 07:35 PM
RE: Accuracy of numsolve in TI, CASIO - Albert Chan - 03-26-2021 09:55 PM
RE: Accuracy of numsolve in TI, CASIO - robve - 03-26-2021, 10:23 PM
|
User(s) browsing this thread: 1 Guest(s)