Post Reply 
Spence function
04-11-2021, 03:22 AM
Post: #16
RE: Spence function




Very beautiful ! We can proof I the same way, just different integral limits.

I = int(ln(1+x)/(1+x²), x=-1 .. ∞)       // x=tan(θ), dx = sec(θ)^2 dθ
  = int(ln(1+tan(θ)), θ=-pi/4 .. pi/2)
  = int(ln(√2), θ=-pi/4 .. pi/2) + int(ln(cos(θ-pi/4)) - ln(cos(θ)), θ=-pi/4 .. pi/2)

When we fold the second term, it disappeared !

∫(f(x), x=a..b) = ∫(f(x) + f(a+b-x), x=a..b) / 2

int(ln(cos(θ-pi/4)) - ln(cos(θ)) + ln(cos(-θ)) - ln(cos(pi/4-θ)), θ=-pi/4 .. pi/2) / 2 = 0

All is left is the first term, I = 3/8*ln(2)*pi
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Spence function - Albert Chan - 01-11-2021, 06:13 PM
RE: Spence function - Albert Chan - 01-11-2021, 06:16 PM
RE: Spence function - Albert Chan - 01-12-2021, 02:17 PM
RE: Spence function - Albert Chan - 01-12-2021, 05:41 PM
RE: Spence function - Albert Chan - 01-13-2021, 05:47 PM
RE: Spence function - C.Ret - 01-12-2021, 05:28 PM
RE: Spence function - Albert Chan - 01-12-2021, 07:49 PM
RE: Spence function - C.Ret - 01-12-2021, 08:24 PM
RE: Spence function - Albert Chan - 01-12-2021, 11:24 PM
RE: Spence function - Albert Chan - 01-14-2021, 01:55 PM
RE: Spence function - Albert Chan - 01-14-2021, 03:30 PM
RE: Spence function - Albert Chan - 01-31-2021, 03:24 PM
RE: Spence function - Albert Chan - 04-04-2021, 10:57 PM
RE: Spence function - Albert Chan - 04-05-2021, 03:24 AM
RE: Spence function - Albert Chan - 04-05-2021, 04:58 PM
RE: Spence function - Albert Chan - 04-11-2021 03:22 AM
RE: Spence function - Albert Chan - 05-04-2021, 03:17 PM
RE: Spence function - Albert Chan - 03-20-2022, 04:33 PM



User(s) browsing this thread: 3 Guest(s)