Spence function
|
05-04-2021, 03:17 PM
Post: #17
|
|||
|
|||
RE: Spence function
(04-11-2021 03:22 AM)Albert Chan Wrote: I = int(ln(1+x)/(1+x²), x=-1 .. ∞) // x=tan(θ), dx = sec(θ)^2 dθ Simplify steps, tan(θ) = sin(θ)/cos(θ), then cos(θ) + sin(θ) = √(2)*cos(θ-pi/4) can all be skipped. Folding tan(θ) integrand directly is easier. I = ∫(ln(1+tan(θ)), θ=-pi/4 .. pi/2) 2*I = ∫(ln(1+tan(α)) + ln(1+tan(β)), α=-pi/4 .. pi/2) // where α = θ, β = pi/4 - α = ∫(ln(1 + tan(α) + tan(β) + tan(α)*tan(β)), α=-pi/4 .. pi/2) tan(α+β) = (tan(α) + tan(β)) / (1 - tan(α)*tan(β)) = tan(pi/4) = 1 1 + tan(α) + tan(β) + tan(α)*tan(β) = 1 + (1 - tan(α)*tan(β)) + tan(α)*tan(β) = 2 2*I = ∫(ln(2), α=-pi/4 .. pi/2) I = ln(2) * (pi/2 + pi/4) / 2 = 3/8*ln(2)*pi |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Spence function - Albert Chan - 01-11-2021, 06:13 PM
RE: Spence function - Albert Chan - 01-11-2021, 06:16 PM
RE: Spence function - Albert Chan - 01-12-2021, 02:17 PM
RE: Spence function - Albert Chan - 01-12-2021, 05:41 PM
RE: Spence function - Albert Chan - 01-13-2021, 05:47 PM
RE: Spence function - C.Ret - 01-12-2021, 05:28 PM
RE: Spence function - Albert Chan - 01-12-2021, 07:49 PM
RE: Spence function - C.Ret - 01-12-2021, 08:24 PM
RE: Spence function - Albert Chan - 01-12-2021, 11:24 PM
RE: Spence function - Albert Chan - 01-14-2021, 01:55 PM
RE: Spence function - Albert Chan - 01-14-2021, 03:30 PM
RE: Spence function - Albert Chan - 01-31-2021, 03:24 PM
RE: Spence function - Albert Chan - 04-04-2021, 10:57 PM
RE: Spence function - Albert Chan - 04-05-2021, 03:24 AM
RE: Spence function - Albert Chan - 04-05-2021, 04:58 PM
RE: Spence function - Albert Chan - 04-11-2021, 03:22 AM
RE: Spence function - Albert Chan - 05-04-2021 03:17 PM
RE: Spence function - Albert Chan - 03-20-2022, 04:33 PM
|
User(s) browsing this thread: 2 Guest(s)