HP71B IBOUND fooled
|
05-21-2021, 07:32 PM
Post: #2
|
|||
|
|||
RE: HP71 IBOUND fooled
Code: / Inf Let cis(x) = exp(i*x) ∫(cis(x^2)) = ∫(exp(-(w*x)^2)), where w = cis(-pi/4) = sqrt(pi)/2 * erf(x*w)/w ∫(cis(x^2±x)) = ∫(cis((x±1/2)^2 - 1/4)) = cis(-1/4) * ∫(cis((x±1/2)^2)) = cis(-1/4) * sqrt(pi)/2 * erf((x±1/2)*w)/w F(x) = ∫(sin(x)*sin(x^2)) = ∫(sinh(i*x)/i * sinh(i*x^2)/i) = -1/4 * ∫((cis(x)-cis(-x)) * (cis(x^2)-cis(-x^2))) = -1/4 * ∫((cis(x+x^2)+cis(-x-x^2)) - (cis(-x+x^2)+cis(x-x^2))) = -1/2 * re(∫(cis(x^2+x) - cis(x^2-x))) = -1/2 * re(cis(-1/4) * sqrt(pi)/2 * (erf((x+1/2)*w) - erf((x-1/2)*w))/w) erf(∞) = 1 -> F(∞) = 0 erf() is odd -> F(0) = - re(cis(-1/4) * sqrt(pi)/2 * erf(w/2)/w) Power Series Expansion of the Error Function sqrt(pi/2)*erf(z) = z - z^3/(3*1!) + z^5/(5*2!) - z^7/(7*3!) + ... sqrt(pi)/2 * erf(w/2)/w = 1/2 - (-i)/(3*1!*2^3) + (-1)/(5*2!*2^5) - (+i)/(7*3!*2^7) + 1/(9*4!*2^9) - (-i)/(11*5!*2^11) + (-1)/(13*6!*2^13) - (+i)/(15*7!*2^15) + ... = (1/2 - 1/320 + 1/110592 - 1/76677120 + ...) + (1/24 - 1/5376 + 1/2703360 - 1/2477260800 + ...) * i ≈ 0.496884029215 + 0.0414810242685*i F(∞) - F(0) = re(cis(-1/4) * sqrt(pi)/2 * erf(w/2)/w) ≈ cos(1/4) * 0.496884029215 + sin(1/4) * 0.0414810242685 ≈ 0.491699677694 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP71B IBOUND fooled - Albert Chan - 05-21-2021, 07:17 PM
RE: HP71 IBOUND fooled - Albert Chan - 05-21-2021 07:32 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-21-2021, 09:38 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 01:42 AM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 02:57 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022, 04:48 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022, 06:01 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-03-2022, 07:09 PM
|
User(s) browsing this thread: 1 Guest(s)