HP71B IBOUND fooled
|
05-21-2021, 09:38 PM
Post: #3
|
|||
|
|||
RE: HP71B IBOUND fooled
(05-21-2021 07:32 PM)Albert Chan Wrote: F(∞) - F(0) Just found a more elegant way, without doing even cos(1/4), sin(1/4). Abramowitz and Stegun, eqn 7.1.6: \(\quad\displaystyle erf(z) = {2\over\sqrt{\pi}} e^{-z^2} \sum_{n=0}^∞ {2^n \over 1·3· \cdots (2n+1)} z^{2n+1} \) exp(-z^2) = exp(-w^2/4) = exp(i/4) = cis(1/4) This got completely cancelled with term cis(-1/4) This left only summation terms ... and only the real terms F(∞) - F(0) = 1/2 - 1/(3*5*2^3) + 1/(3*5*7*9*2^5) - 1/(3*5*7*9*11*13*2^7) + ... = 1/2 * (1 - 1/(3*5*4) * (1 - 1/(7*9*4) * (1 - 1/(11*13*4) * (1 - ...)))) ≈ 0.491699677694 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP71B IBOUND fooled - Albert Chan - 05-21-2021, 07:17 PM
RE: HP71 IBOUND fooled - Albert Chan - 05-21-2021, 07:32 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-21-2021 09:38 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 01:42 AM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 02:57 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022, 04:48 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022, 06:01 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-03-2022, 07:09 PM
|
User(s) browsing this thread: 3 Guest(s)