Estimate logarithm quickly
|
08-21-2021, 05:41 PM
Post: #3
|
|||
|
|||
RE: Estimate logarithm quickly
(08-21-2021 03:58 PM)Albert Chan Wrote: To proof it, it required this inequality (also not proofed, suggestions welcome): My attempt to proof this, by showing there is no local extremum for 0 < w < 1 To get the extrema of above is messy. Instead, we solve extrema of ln(expression) XCAS> f := (2-w)*ln(1-w) + (2+w)*ln(1+w) XCAS> diff(f,w) -ln(1-w) - (2-w)/(1-w) + ln(1+w) + (2+w)/(1+w) XCAS> numer(ans()) // local extrema if df/dw = 0 -ln(w+1) + ln(-w+1) + w^2*ln(w+1) - w^2*ln(-w+1) + 2*w Divide all by 2, then replace with identity atanh(x) = ln((x+1)/(1-x))/2 (w^2-1) * atanh(w) + w = (w^2-1) * (w + w^3/3 + w^5/5 + ...) + w All coefficients of w's is positive, 1/(2k-1) - 1/(2k+1) = 2/(4k^2-1) > 0 XCAS> series((w^2-1)*atanh(w) + w, w,0,10) 2*w^3/3 + 2*w^5/15 + 2*w^7/35 + 2*w^9/63 + w^11*order_size(w) Within 0 < w < 1, there is no local extremum, f is bounded by edges. XCAS> limit(f, w=0, +1) → 0 XCAS> limif(f, w=1, -1) → -infinity f = ln((1-w)^(2-w) * (1+w)^(2+w)) < 0 → (1-w)^(2-w) * (1+w)^(2+w) < 1 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)