Square Root Process Similar to Long Division
|
09-18-2021, 01:07 PM
Post: #5
|
|||
|
|||
RE: Square Root Process Similar to Long Division
Newton's method converge fast, but required expensive mul/div.
HP has a digit-by-digit method for square-root, that is very efficient. First, we halved R R/2 = δ*(X+δ/2) if δ=1, δ*(X+δ/2) = (X+0.5) if δ=2, δ*(X+δ/2) = 2*(X+1) = (X+0.5) + (X+1.5) if δ=3, δ*(X+δ/2) = 3*(X+1.5) = (X+0.5) + (X+1.5) + (X+2.5) ... This way, we avoided division to get δ. When R/2 - δ*(X+δ/2) < 0, we gone too far. √12345, digit-by-digit: 1.2345 - 1^2 = .2345 R/2 = .11725 11.725 - 10.5 = 1.225 1.225 - 11.5 = -10.275 122.5 - 110.5 = 12 12 - 111.5 = -99.5 1200 - 1110.5 = 89.5 89.5 - 1111.5 = -1022 8950 - 11110.5 = -2160.5 895000 - 111100.5 = 783899.5 783899.5 - 111101.5 = 672798 672798 - 111102.5 = 561695.5 561695.5 - 111103.5 = 450592 450592 - 111104.5 = 339487.5 339487.5 - 111105.5 = 228382 228382 - 111106.5 = 117275.5 117275.5 - 111107.5 = 6168 6168 - 111108.5 = -104940.5 616800 - 1111080.5 = -494280.5 61680000 - 11110800.5 = 50569199.5 50569199.5 - 11110801.5 = 39458398 39458398 - 11110802.5 = 28347595.5 28347595.5 - 11110803.5 = 17236792 17236792 - 11110804.5 = 6125987.5 6125987.5 - 11110805.5 = -4984818 √12345 ≈ 111.10805 (under-estimated due to positive remainder) Except for initial setup, algorithm only use subtraction Quote:Note that for the final quotient = 12345-111.10805^2 = .0012251975 is the remainder We confirm by undo scaling and halving R first digit 1.2345/12345 = 1e-4, other 7 digits 100^7 = 1e14 12345 - 111.10805^2 = 6125987.5 * 1e-10 * 2 = 0.0012251975 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Square Root Process Similar to Long Division - jeejohn - 09-17-2021, 11:00 PM
RE: Square Root Process Similar to Long Division - Albert Chan - 09-17-2021, 11:58 PM
RE: Square Root Process Similar to Long Division - Albert Chan - 09-18-2021, 01:51 AM
RE: Square Root Process Similar to Long Division - Albert Chan - 09-18-2021, 12:46 PM
RE: Square Root Process Similar to Long Division - Albert Chan - 09-18-2021 01:07 PM
RE: Square Root Process Similar to Long Division - jeejohn - 09-18-2021, 08:55 PM
RE: Square Root Process Similar to Long Division - Thomas Klemm - 11-06-2022, 04:33 PM
RE: Square Root Process Similar to Long Division - Thomas Okken - 11-06-2022, 07:25 PM
|
User(s) browsing this thread: 3 Guest(s)