smallest |cos(x)| ?
|
10-08-2021, 08:17 PM
(This post was last modified: 10-12-2021 11:36 AM by Albert Chan.)
Post: #8
|
|||
|
|||
RE: smallest |cos(x)| ?
(10-08-2021 07:02 AM)Werner Wrote: A bit counterintuitive that the smallest COS happens for such a large argument value; This give me an idea ! For IP(x) of 9 digits, calculate (pi/2*10^(34-9)), then throwaway rounded integer part Absolute of fractional part is how close expression to integer. No fractional part implied x - rounded(x,34) = 0 c:\> spigot -d15 -C abs(frac(pi/2*1e25+.5)-.5) 0/1 1/11 1/12 25/299 26/311 207/2476 233/2787 440/5263 673/8050 9189/109913 28240/337789 65669/785491 1472958/17618591 1538627/18404082 13781974/164851247 539035613/6447602715 x = (2k+1) * pi/2 = [1e8, 1e9) (2k+1) = (2/pi) * [1e8, 1e9) ≈ 0.6366197724 * [1e8, 1e9) From the convergents, 2k+1 = 164851247 satisfied. 3*(2k+1) = 494553741 also valid, but produced error of 3ε 82425623.5 PI * COS → 1.532138639232766081410107492878833e-35 247276870.5 PI * COS → -4.596415917698298244230322478636498e-35 Best semi-convergent is not as good: 2k+1 = 18404082 + 164851247*3 = 512957823 256478911.5 PI * COS → -5.589328359211609676578079200248261e-34 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
smallest |cos(x)| ? - Albert Chan - 10-07-2021, 12:14 PM
RE: smallest |cos(x)| ? - Werner - 10-07-2021, 03:40 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-07-2021, 06:40 PM
RE: smallest |cos(x)| ? - Werner - 10-08-2021, 07:02 AM
RE: smallest |cos(x)| ? - Albert Chan - 10-08-2021 08:17 PM
RE: smallest |cos(x)| ? - ijabbott - 10-09-2021, 01:15 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-09-2021, 02:09 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-09-2021, 05:01 PM
RE: smallest |cos(x)| ? - EdS2 - 10-08-2021, 08:24 AM
RE: smallest |cos(x)| ? - Werner - 10-08-2021, 02:16 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-08-2021, 07:54 PM
RE: smallest |cos(x)| ? - Werner - 10-11-2021, 01:16 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-11-2021, 04:22 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-10-2021, 01:36 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-11-2021, 10:05 PM
|
User(s) browsing this thread: 2 Guest(s)