smallest |cos(x)| ?
|
10-09-2021, 05:01 PM
(This post was last modified: 10-24-2021 12:49 PM by Albert Chan.)
Post: #11
|
|||
|
|||
RE: smallest |cos(x)| ?
(10-09-2021 02:09 PM)Albert Chan Wrote: Both effect tends to cancel out, giving min(ε) not much smaller than machine epsilon. Perhaps Loch's theorem explain this. Quote:this can be interpreted as saying that each additional term in the continued fraction representation of a "typical" real number increases the accuracy of the representation by approximately one decimal place. When I did the convergents, steps required to get q = 2k+1 is roughly the same. If valid 2k+1 is big, convergents also start with big denominator. Relative error of final convergent tends towards the same ballpark. Example, IP(x) of 47 digits. Convergents of y = (pi/2) / 10^(47 - 34): 0/1 1/6366197723675 1/6366197723676 5/31830988618379 ... 933595789363114285779172744945397/5943455389076782359664376669525821535544153034 9341730789500356812974471132146251/59471305287309430984490740451345101530239801689 y = 1.570796326794896619231321691639751 ... * 10^-13 p = 9341730789500356812974471132146251 q = 59471305287309430984490740451345101530239801689 x = p * 10^13 ≈ 9.341730789500356812974471132146251e46 ε = abs(q*y - p) * 10^13 ≈ 1.028415848209791685669808767152452e-35 Update: Brute force proof, for Free42-Decimal, |cos(x)| > 10^-37 see https://www.hpmuseum.org/forum/thread-17...#pid153539 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
smallest |cos(x)| ? - Albert Chan - 10-07-2021, 12:14 PM
RE: smallest |cos(x)| ? - Werner - 10-07-2021, 03:40 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-07-2021, 06:40 PM
RE: smallest |cos(x)| ? - Werner - 10-08-2021, 07:02 AM
RE: smallest |cos(x)| ? - Albert Chan - 10-08-2021, 08:17 PM
RE: smallest |cos(x)| ? - ijabbott - 10-09-2021, 01:15 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-09-2021, 02:09 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-09-2021 05:01 PM
RE: smallest |cos(x)| ? - EdS2 - 10-08-2021, 08:24 AM
RE: smallest |cos(x)| ? - Werner - 10-08-2021, 02:16 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-08-2021, 07:54 PM
RE: smallest |cos(x)| ? - Werner - 10-11-2021, 01:16 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-11-2021, 04:22 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-10-2021, 01:36 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-11-2021, 10:05 PM
|
User(s) browsing this thread: 4 Guest(s)