smallest |cos(x)| ?
|
10-10-2021, 01:36 PM
Post: #12
|
|||
|
|||
RE: smallest |cos(x)| ?
Trivia: 2 convergents cannot have both even denominator (or both even numerator)
Code: def genConvergents(coefs): From the loops, assume d0 is odd, d1 is even (same reasoning for numerator) d1 ← d0 + coef*d1 = odd + even = odd With this trivia, our search for "best" denominator = 2k+1 guaranteed exist. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
smallest |cos(x)| ? - Albert Chan - 10-07-2021, 12:14 PM
RE: smallest |cos(x)| ? - Werner - 10-07-2021, 03:40 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-07-2021, 06:40 PM
RE: smallest |cos(x)| ? - Werner - 10-08-2021, 07:02 AM
RE: smallest |cos(x)| ? - Albert Chan - 10-08-2021, 08:17 PM
RE: smallest |cos(x)| ? - ijabbott - 10-09-2021, 01:15 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-09-2021, 02:09 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-09-2021, 05:01 PM
RE: smallest |cos(x)| ? - EdS2 - 10-08-2021, 08:24 AM
RE: smallest |cos(x)| ? - Werner - 10-08-2021, 02:16 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-08-2021, 07:54 PM
RE: smallest |cos(x)| ? - Werner - 10-11-2021, 01:16 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-11-2021, 04:22 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-10-2021 01:36 PM
RE: smallest |cos(x)| ? - Albert Chan - 10-11-2021, 10:05 PM
|
User(s) browsing this thread: 1 Guest(s)