Rational trig identities?
|
10-10-2021, 06:21 PM
Post: #2
|
|||
|
|||
RE: Rational trig identities?
(05-31-2021 09:51 PM)Albert Chan Wrote: \(\displaystyle\arctan(x) = 2\arctan\left( {x \over \sqrt{1+x^2}+1} \right)\) This covered n = powers-of-2: With Pythagorean triples formula: (m^2-n^2)^2 + (2mn)^2 = (m^2+n^2)^2 This made above square root goes away. atan((2*m*n)/(m^2-n^2)) = 2*atan( (2*m*n)/((m^2+n^2)+(m^2-n^2)) = 2*atan(n/m) Let 2^p = m/n, above simplified to: 2*atan(1/2^p) = atan(2^(p+1)/(4^p-1)) Example: 2*atan(1/2) = atan(4/3) 2*atan(1/4) = atan(8/15) 4*atan(1/4) = atan((2*15*8)/(15^2-8^2)) = atan(240/161) 2*atan(1/8) = atan(16/63) 4*atan(1/8) = atan((2*63*16)/(63^2-16^2)) = atan(2016/3713) 8*atan(1/8) = atan((2*3713*2016)/(3713^2-2016^2)) = atan(14970816/9722113) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Rational trig identities? - John Keith - 10-10-2021, 04:42 PM
RE: Rational trig identities? - Albert Chan - 10-10-2021 06:21 PM
RE: Rational trig identities? - Albert Chan - 10-10-2021, 08:02 PM
RE: Rational trig identities? - Albert Chan - 10-12-2021, 04:05 PM
RE: Rational trig identities? - Albert Chan - 10-10-2021, 09:25 PM
RE: Rational trig identities? - John Keith - 10-11-2021, 01:08 PM
RE: Rational trig identities? - Albert Chan - 10-12-2021, 02:09 PM
|
User(s) browsing this thread: 1 Guest(s)