mini challenge: find the smallest cosine of an integer
|
10-21-2021, 01:09 PM
Post: #8
|
|||
|
|||
RE: mini challenge: find the smallest cosine of an integer
(10-21-2021 12:01 PM)Albert Chan Wrote: With convergents fully reduced, even numerator guaranteed odd denominator. 2 neighboring convergents, p1/q1, p2/q2, we have p1*q2 - p2*q1 = ± 1 // or, gap = |p1/q1 - p2/q2| = 1/|q1*q2| If g = gcd(p1,q1) ≠ 1, RHS must be multiples of g, contradict above identity. Thus, convergents always fully reduced. |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)