Post Reply 
HP-35’s x^y Why?
11-03-2021, 07:47 AM (This post was last modified: 11-03-2021 08:01 AM by J-F Garnier.)
Post: #31
RE: HP-35’s x^y Why?
(11-03-2021 02:37 AM)robve Wrote:  I strongly suspect that a dedicated key for the y'th root of x (or the x'th root of y with Sharp) surely indicates that negative x with odd y'th roots are supported, e.g. (-27)^1/3 returns -3.
Yeap.

(11-03-2021 03:46 AM)robve Wrote:  HP-35s:
ALG mode: (-128)^INV(7) ERROR
RPN mode: 7 1/x 128 (-) y^x ERROR


... these calculators have an n-th root key except the Ti-25.

But why, oh why HP-35s did you fail?

Here, I don't follow you. Why not using the nth-root key?
With it, the 35S doesn't fail. No need to create a new artificial weakness of this machine.

An additional benefit of the nth-root is a marginally improved accuracy.
Example on Saturn-based HP machines:
125^(1/3) = 4.9999...
but XROOT(125,3)=5 exactly.
(unless Albert finds a counter example :-)

J-F
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
HP-35’s x^y Why? - Matt Agajanian - 10-30-2021, 06:33 PM
RE: HP-35’s x^y Why? - toml_12953 - 10-30-2021, 06:43 PM
RE: HP-35’s x^y Why? - TomC - 10-30-2021, 07:41 PM
RE: HP-35’s x^y Why? - Peet - 10-30-2021, 08:46 PM
RE: HP-35’s x^y Why? - Gerson W. Barbosa - 10-30-2021, 09:54 PM
RE: HP-35’s x^y Why? - Steve Simpkin - 10-30-2021, 11:43 PM
RE: HP-35’s x^y Why? - Peet - 10-31-2021, 07:45 AM
RE: HP-35’s x^y Why? - Steve Simpkin - 10-31-2021, 07:07 PM
RE: HP-35’s x^y Why? - Peet - 10-31-2021, 09:18 PM
RE: HP-35’s x^y Why? - Didier Lachieze - 10-31-2021, 09:49 PM
RE: HP-35’s x^y Why? - lrdheat - 10-31-2021, 12:00 AM
RE: HP-35’s x^y Why? - Steve Simpkin - 10-31-2021, 12:23 AM
RE: HP-35’s x^y Why? - rprosperi - 10-31-2021, 01:09 AM
RE: HP-35’s x^y Why? - Steve Simpkin - 10-31-2021, 01:34 AM
RE: HP-35’s x^y Why? - Dave Britten - 10-31-2021, 01:31 PM
RE: HP-35’s x^y Why? - rprosperi - 10-31-2021, 08:18 PM
RE: HP-35’s x^y Why? - Steve Simpkin - 10-31-2021, 09:39 PM
RE: HP-35’s x^y Why? - rprosperi - 10-31-2021, 11:59 PM
RE: HP-35’s x^y Why? - Steve Simpkin - 11-01-2021, 12:51 AM
RE: HP-35’s x^y Why? - ijabbott - 11-01-2021, 08:40 PM
RE: HP-35’s x^y Why? - EdS2 - 11-01-2021, 09:54 AM
RE: HP-35’s x^y Why? - rprosperi - 11-01-2021, 12:40 PM
RE: HP-35’s x^y Why? - John Keith - 11-01-2021, 02:47 PM
RE: HP-35’s x^y Why? - robve - 11-03-2021, 02:37 AM
RE: HP-35’s x^y Why? - robve - 11-03-2021, 03:46 AM
RE: HP-35’s x^y Why? - Albert Chan - 11-03-2021, 07:45 AM
RE: HP-35’s x^y Why? - robve - 11-03-2021, 01:44 PM
RE: HP-35’s x^y Why? - Albert Chan - 11-03-2021, 03:21 PM
RE: HP-35’s x^y Why? - J-F Garnier - 11-03-2021 07:47 AM
RE: HP-35’s x^y Why? - robve - 11-03-2021, 02:38 PM
RE: HP-35’s x^y Why? - J-F Garnier - 11-03-2021, 03:43 PM
RE: HP-35’s x^y Why? - robve - 11-03-2021, 05:46 PM
RE: HP-35’s x^y Why? - J-F Garnier - 11-03-2021, 06:41 PM
RE: HP-35’s x^y Why? - robve - 11-03-2021, 08:04 PM
RE: HP-35’s x^y Why? - Albert Chan - 11-03-2021, 06:22 PM
RE: HP-35’s x^y Why? - cdmackay - 11-02-2021, 04:22 PM
RE: HP-35’s x^y Why? - ijabbott - 11-02-2021, 08:09 PM
RE: HP-35’s x^y Why? - Gene - 11-02-2021, 04:31 PM
RE: HP-35’s x^y Why? - Jeff O. - 11-04-2021, 09:15 PM
RE: HP-35’s x^y Why? - Guenter Schink - 11-04-2021, 09:21 PM



User(s) browsing this thread: 1 Guest(s)