Test
|
11-27-2021, 01:34 PM
(This post was last modified: 04-29-2024 09:00 PM by Gerson W. Barbosa.)
Post: #1
|
|||
|
|||
Test
\[\ln\left({\frac{16\ln\left({x}\right)}{\ln\left({16\ln\left({x}\right)}\right)}}\right)\]
where \[x=878-\frac{1}{878^2-\frac{25}{21-\left({\frac{1}{40-\frac{1}{90}}}\right)^2}\sqrt{878^3}}\] 3.141592653589793238462(537) (29 Apr 2024) \[\left\{{\left[{2-\frac{1}{2^{19}-\left({58-\frac{1}{116+\phi^2}}\right)^2}}\right]\times\frac{9-100\sqrt{2}}{8+100\sqrt{2}}}\right\}^2\] 3.1415926535897932(632) (24 Mar 2024) \[\frac{10000\ln\left({5+\frac{1}{50000000}}\right)}{5123\left[{1+\left({\frac{7}{40000000}}\right)^2}\right]}\] 3.1415926535897932(413) (14 Mar 2024) \[\left({\frac{4+\frac{\phi+2}{200}}{3+\frac{\phi+2}{200}}}\right)^4\] 3.1415926(397) (14 Mar 2024) \[\frac{4\left({2500\ln\left({5}\right)+\frac{1}{99999+\sqrt{5}}}\right)}{5123}\] \[\frac{10000\ln\left({5+\frac{1}{50000000}}\right)}{5123}\] \(\sqrt[4]{\frac{2143+\left({6+\sqrt{6-\left({6^5-5}\right)^{-1}}}\right)^{-6}}{22}}\) \(\frac{2^8-\frac{790}{516}}{3^4}\) \(\frac{63}{25}\left({\frac{17+3x\sqrt{x}}{7+3x\sqrt{x}}}\right)\) where \(x=5+\frac{7}{5000000000+1000000\sqrt{5}}\) or \(x=5+\frac{7}{5000000000+\left({1000000+\sqrt{1000\times5!-e^5}}\right)\sqrt{5}}\) Based on an approximation by Ramanujan ( x = 5 ) \(\frac{\ln\left({\frac{16\times\ln\left({878}\right)}{\ln\left({16\ln\left({878}\right)}\right)}}\right)}{1+\left({\frac{5}{94+\sqrt{2}}}\right)^8}\) \(\sqrt[4]{\frac{2143+\frac{1}{\left({6+\sqrt{6-\frac{1}{6^5-5}}}\right)^6}}{22}}\) \(\sqrt[4]{\frac{2143}{22}+\frac{1}{32\left({500+\frac{1}{\sqrt{32-\frac{\sqrt{2}}{15}}}}\right)^2}}\) \(e^{\sqrt[11_{3}]{\frac{2222_{4}-\frac{1}{22_{9}^{2}+22_{16}^{2}+\frac{1}{1111_{7}}}}{99_{10}}}}\) https://latexeditor.lagrida.com/ \(\sqrt{\frac{878}{89-\frac{1}{\sqrt{625-\frac{33}{1385+\sqrt{\frac{2}{3}}}}}}}\) \(e^{\pi}-\pi+\frac{1}{\left({\frac{10^5-1+\sqrt{2}}{10^4}+\frac{\pi\sqrt{2}}{4}}\right)\left({\frac{10^5-1+\sqrt{2}}{10^4}}\right)^2} \) \(e^{\pi}-\pi-\frac{e}{\left({e^{-\pi^2}-\pi}\right)\pi^6}\) \(\sqrt[4]{\frac{2143}{22}+\frac{1}{\left({2000\sqrt{2}+3}\right)^2-\frac{31999\sqrt{2}}{4}}}\) \(\sqrt[4]{\frac{2143+\frac{1}{\left({6+\sqrt{6-\frac{1}{6^5-5}}}\right)^6}}{22}}\) \(\frac{\ln\left({\frac{16\times\ln\left({878}\right)}{\ln\left({16\ln\left({878}\right)}\right)}}\right)}{1+\left({\frac{5}{94+\sqrt{2}}}\right)^8}\) \(\sqrt[4]{\frac{2143+\left({6-6^{-6}+\sqrt{6-6^{-6}}}\right)^{6-6-6}}{22}}\) \(x^7+2x^6+3x^5+4x^4+3x^3+2x^2+x=\frac{19100}{3}\) \(e\times\sqrt[12]{e^{\left({-3\times4}\right)}+5.67890}\) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Test - Gerson W. Barbosa - 11-27-2021 01:34 PM
|
User(s) browsing this thread: 1 Guest(s)